Differences in Susceptibility to Phomopsis Blight of Seven Eggplant Cultivars with Different Fruit Types

Author(s):  
Anthony Keinath

Phomopsis blight caused by Diaporthe vexans is a serious disease on fall eggplant crops in the southeastern United States. The objective was to compare seven eggplant cultivars, representing seven horticultural fruit types, for susceptibility to D. vexans. Eggplant transplanted in April 2018 and 2019 was cut back in late summer and harvested in September and October. Leaf disease incidence was lower on Rosa Bianca (Italian type) and Gretel (white) both years than on other cultivars, except Millionaire (Japanese) in 2018 (P ≤ 0.01). Leaf AUDPC based on severity and percentage defoliation were greater on Black Beauty (globe type) than Patio Baby (Indian), Millionaire (Japanese), Rosa Bianca (Italian), and Gretel (white). Cankered stem length was greater on Black Beauty and Fairy Tale than on Gretel. Hansel (Chinese) and Gretel produced the most healthy, unblemished marketable fruit; Patio Baby, Millionaire, and Fairy Tale had a moderate number; and Black Beauty and Rosa Bianca produced the fewest fruit. Percentage fruit rot both years was greater (P ≤ 0.01) on Black Beauty than Hansel, Gretel, Patio Baby, and Rosa Bianca. Several eggplant cultivars, such as Hansel and Gretel, are less susceptible to Phomopsis fruit rot than Black Beauty and produce more marketable fruit than several other specialty eggplant cultivars.

2014 ◽  
Vol 15 (3) ◽  
pp. 145-150 ◽  
Author(s):  
Chandrasekar S. Kousik ◽  
Jennifer L. Ikerd ◽  
Howard F. Harrison

Fruit rot, caused by Phytophthora capsici, is a serious disease in most watermelon producing regions in the southeastern United States and has caused devastating losses over the past few years. Experiments were conducted from 2010 to 2013 in a P. capsici-infested field to identify fungicides effective for managing pre- and postharvest development of Phytophthora fruit rot. Weekly treatments of OXTP (Oxathiapiprolin), V-10208 (ethaboxam), Zampro (ametoctradin+dimethomorph), Forum (dimethomorph), Prophyt (potassium phosphite) + Kocide 2000 (copper hydroxide), Revus (mandipropamid) rotated with Prophyt + Kocide, and rotations of Revus with Presidio (fluopicolide) and Actigard with Revus significantly reduced preharvest fruit rot in the field compared to nontreated control. Symptomless fruit harvested four days after the last spray was inoculated with P. capsici and maintained in a humid chamber to evaluate postharvest fruit rot development. OXTP, Zampro, Forum, V-10208, Presidio rotated with Revus, and Actigard rotated with Revus applied in the field provided extended postharvest protection compared to nontreated control. Many of these fungicides belonging to different FRAC group should be used in rotations to manage Phytophthora fruit rot of watermelon and should be part of an overall management strategy that also includes use of well drained fields and proper irrigation practices. Accepted 25 August 2014. 29 September 2014.


2006 ◽  
Vol 131 (4) ◽  
pp. 491-498 ◽  
Author(s):  
Kaori Ando ◽  
Rebecca Grumet

Fruit rot induced by Phytophthora capsici Leonian is an increasingly serious disease affecting pickling cucumber (Cucumis sativus L.) production in many parts of the United States. The absence of genetically resistant cultivars and rapid development of fungicide resistance makes it imperative to develop integrated disease management strategies. Cucumber fruit which come in direct contact with the soil-borne pathogen are usually located under the canopy where moist and warm conditions favor disease development. We sought to examine whether variations in plant architecture traits that influence canopy structure or fruit contact with the soil could make conditions less favorable for disease development. As an extreme test for whether an altered canopy could facilitate P. capsici control, we tested the effect of increased row spacing and trellis culture on disease occurrence in the pickling cucumber `Vlaspik'. Temperature under the canopy was lowest in trellis plots, intermediate in increased spacing plots, and highest in control plots. Disease occurrence in the trellis plots was significantly lower than in other treatments, indicating that preventing fruit contact with the soil reduced disease occurrence. The effect of currently available variation in plant architecture was tested using nearly-isogenic genotypes varying for indeterminate (De), determinate (de), standard leaf (LL), and little leaf (ll) traits. Plants with standard architecture had higher peak mid-day temperatures under the canopy and greater levels of P. capsici infection; however, levels of disease occurrence were high for all genotypes. Screening a collection of ≈150 diverse cucumber accessions identified to serve as a representative sample of the germplasm, revealed variation for an array of architectural traits including main stem length, internode length, leaf length and width, and number of branches; values for `Vlaspik' were in the middle of the distribution. Plant architectures that may allow for more open canopies, including reduced branching habit and compact growth, were tested for disease incidence. One of the compact lines (PI 308916), which had a tendency to hold young fruit off the ground, exhibited lower disease occurrence. The reduced disease occurrence was not due to genetic resistance, suggesting that architecture which allows less contact of fruit with the soil could be useful for P. capsici control for pickling cucumber.


Plant Disease ◽  
2002 ◽  
Vol 86 (2) ◽  
pp. 156-161 ◽  
Author(s):  
P. A. Abbasi ◽  
J. Al-Dahmani ◽  
F. Sahin ◽  
H. A. J. Hoitink ◽  
S. A. Miller

Field trials were conducted over 2 years to assess the effects of compost amendments on disease development in organic and conventional processing tomato (Lycopersicon esculentum L.) production systems. The incidence of anthracnose fruit rot was reduced in organic tomato plots amended with a high rate of composted cannery wastes compared with the incidence in nonamended control plots in 1998 when disease incidence was high. Marketable yield was increased by 33% in compost-amended organic plots. Plots amended with a high compost rate had more ripe fruit than the nonamended control. The incidence of anthracnose and of total disease on fruit was less on the cultivar OH 8245 than on Peto 696. Total fruit yield of OH 8245 but not Peto 696 in organic plots was increased by amendment with composted cannery wastes. In conventional tomato production, composted yard wastes increased disease severity on foliage both years but reduced bacterial spot incidence on fruit in 1997, when disease pressure was high. The incidence of anthracnose was not affected by composted yard wastes. Marketable and total fruit yields of Peto 696 were not increased in compost-amended conventional plots. The plant activator Actigard reduced foliar disease severity and the incidence of bacterial spot and anthracnose on fruit, while increasing yield of marketable fruit.


1969 ◽  
Vol 13 (2) ◽  
pp. 35-57
Author(s):  
J. A. B. Nolla

1. A serious disease of eggplants known in Porto Rico as "lunares de la hoja y tallo" and "podredumhre de la fruta", in the United States of North America as leaf blight, foot-rot, leaf-spot, stem-blight. fruit-rot, eggplant-blight and seedling-stem-blight and in Cuba as "mancha de la hoja" and "enfermedad del tallo" exists in Porto Rico. 2. All varieties of eggplant are more or less equally susceptible under Porto Rican conditions. Color of plant or of fruit has no bearing on susceptibility or resistance. 3. The disease usually brings a loss of 50 per cent or over of the crop. 4. The symptoms of the disease appear on all above-ground parts of the plant. A seedling blight, stem and petiole cankers, spots on leaf blades, fruit stalks and calices and a rotting of the young and mature fruit are produced. 5. The fungus may occur inside the seed. 6. The pathogene responsible for the malady is Phomopsis vexans (Sacc. & Sydow) Harter. 7. Variations of the fungus as have been observed elsewhere do not appear to occur in the fungus in Porto Rico. 8. The size of the pyenidiospores ranges from 5 to 8 microns in length to 1.3 to 3 microns in width. 9. The germ tube of a germinating spore may either enter through a stoma, enter through a wound or force its penetration through the cuticle. 10. Secondary cycles repeatedly occur in fields. 11. The fungus is capable of a saprophytic existence. 12. The prevailing temperature in Porto Rico seems adequate for spore germination. 13. Moisture is a very important factor in outbreaks of the disease. 14. The disease is probably controlled by a three- or four-years rotation. 15. Plants with the symptoms of the disease should be promptly removed from fields. 16. Although seed treatment is beneficial it never completely eliminates the pathogene. 17. Clean seed from unaffected fruit should be demanded. 18. Infested soils should be avoided in preparing seedbeds. 19. Inoculated soils can he rendered safe for seedlings if drenched with a 1-50 formaldehyde solution at the rate of one-half gallon per square foot of soil surface. An application of 4-4-50 Bordeaux mixture is highly beneficial but the formaldehyde treatment is to be preferred. The latter treatment will cost about two-thirds of one cent per seedling. 20. Bordeaux mixture (4-4-50) is quite effective in preventing seedling blight. The treatment is too expensive and therefore inapplicable under ordinary conditions. Bordeaux mixture may be of practical application where labor cost is reduced. The safest and cheapest control measure is to grow healthy seedlings and set them on in uninfested soils.


2017 ◽  
Vol 18 (1) ◽  
pp. 28-34 ◽  
Author(s):  
Chandrasekar (Shaker) S. Kousik ◽  
Pingsheng Ji ◽  
Daniel S. Egel ◽  
Lina M. Quesada-Ocampo

About 50% of the watermelons in the United States are produced in the southeastern states, where optimal conditions for development of Phytophthora fruit rot prevail. Phytophthora fruit rot significantly limits watermelon production by causing serious yield losses before and after fruit harvest. Efficacy of fungicide rotation programs and Melcast-scheduled sprays for managing Phytophthora fruit rot was determined by conducting experiments in Phytophthora capsici-infested fields at three locations in southeastern United States (North Carolina, South Carolina, and Georgia). The mini seedless cultivar Wonder and seeded cultivar Mickey Lee (pollenizer) were used. Five weekly applications of fungicides were made at all locations. Significant fruit rot (53 to 91%, mean 68%) was observed in the nontreated control plots in all three years (2013 to 2015) and across locations. All fungicide rotation programs significantly reduced Phytophthora fruit rot compared with nontreated controls. Overall, the rotation of Zampro alternated with Orondis was highly effective across three locations and two years. Rotations of Actigard followed by Ranman+Ridomil Gold, Presidio, V-10208, and Orondis, or rotation of Revus alternated with Presidio were similarly effective. Use of Melcast, a melon disease-forecasting tool, may occasionally enable savings of one spray application without significantly impacting control. Although many fungicides are available for use in rotations, under very heavy rain and pathogen pressure, the fungicides alone may not offer adequate protection; therefore, an integrated approach should be used with other management options including well-drained fields.


Plant Disease ◽  
2008 ◽  
Vol 92 (8) ◽  
pp. 1252-1252 ◽  
Author(s):  
J. Moral ◽  
R. De la Rosa ◽  
L. León ◽  
D. Barranco ◽  
T. J. Michailides ◽  
...  

Traditional olive orchards in Spain have been planted at a density of 70 to 80 trees per ha with three trunks per tree. During the last decade, the hedgerow orchard, in which planting density is approximately 2,000 trees per ha, was developed. In 2006 and 2007, we noted a severe outbreak of fruit rot in FS-17, a new cultivar from Italy, in an experimental hedgerow planting in Córdoba, southern Spain. The incidence of fruit rot in ‘FS-17’ was 80% in January of 2006 and 24% in January of 2007. Cvs. Arbosana, IRTA-i18 (a selected clone from ‘Arbequina’), and Koroneiki had no symptoms in either year of the study. Disease incidence in ‘Arbequina’ was <0.1% only in 2006. Affected fruits were soft with gray-white skin and they eventually mummified. Black-green sporodochia were observed on the surface of diseased fruits. A fungus was isolated from diseased fruits on potato dextrose agar (PDA) and incubated at 22 to 26°C with a 12-h photoperiod. After 8 days of growing on PDA, fungal colonies formed conidial chains having a main axis with up to 10 conidia and secondary and tertiary short branches with two to four conidia. Conidia were obpyriform, ovoid, or ellipsoidal, without a beak or with a short beak, had up to four transverse septa, and measured 11.7 to 24.7 (mean 19.6) μm long and 7.7 to 13.0 (mean 9.6) μm wide at the broadest part of the conidium. The length of the beak of conidia was variable, ranging from 0 to 28.6 (mean 5.5) μm. The fungus was identified as Alternaria alternata (1). Pathogenicity tests were performed by spraying 40 mature fruits of ‘FS-17’ with a spore suspension (1 × 106 spores per ml). The same number of control fruits was treated with water. After 21 days, inoculated fruit developed symptoms that had earlier been observed in the field. A. alternata was reisolated from lesions on all infected fruits. The fungus was not isolated from any of the control fruits. The experiment was performed twice. The new growing system and the high susceptibility of some olive cultivars, such as FS-17, may result in a high incidence of disease caused by a pathogen that is generally characterized as weakly virulent. To our knowledge, this is the first report of A. alternata causing a severe outbreak of fruit rot on olive trees in the field. References: (1) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002.


2021 ◽  
Vol 5 (2) ◽  
pp. 60-70
Author(s):  
Alejandro Kepler Llanos Melo ◽  
Walter Eduardo Apaza-Tapia

Stem-end rot (SER) of avocado is caused by several fungal species, and it is presented worldwide. This plant disease currently affects several avocado producer regions in Peru, causing fruit rot, impacting the industry negatively. Research about SER distribution in the canopy of avocado trees is limited. Thus, the present study aimed to compare which areas in the canopy are prone to have more SER in ‘Hass’ avocado harvested fruit in two different coastal areas in Peru. The experiment was conducted in the northern (Barranca) and southern (Cañete) of Lima. ‘Hass’Avocado fruits from both producer areas were collected to identify the causal agent; Lasiodiplodia theobromae was isolated from infected fruits. Identification was conducted based on morphological features and a partial DNA sequence of the translation elongation factor 1-α gene (tef1-α). The results showed that fruits inside the tree canopy were prone to have a higher disease incidence than the fruits located in the external site (P<0.001). Besides, internal-site fruits displayed a higher percentage of infected fruit for each grade disease (P<0.001) than external-site fruits, except for grade 0 (fruits without symptoms) and grade 1. Finally, the results suggested that the altitude where the fruit is positioned on the canopy could influence the incidence of SER, where fruits located in the high part revealed less incidence than the low section. The results are valuable for enhancing management strategies and avoiding postharvest loss of avocado fruits in our region.


Author(s):  
E. Punithalingam

Abstract A description is provided for Didymella chrysanthemi. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Chrysanthemum cinerariifolium, C. morifolium. Also by inoculation on Chrysanthemum carinatum, Cichorium endivia, Cynara scolymus, Dahlia variabilis, Helianthus annuus, Lactuca sativa, Rudbeckia hirta and Zinnia elegans (47, 1154). DISEASE: Generally referred to as ray blight of chrysanthemum (29, 215; 35, 878) and sometimes called black rot (43, 97) or Ascochytosis of chrysanthemum (48, 185). On blossoms usually infection is observed on the side but may later spread until all the florets are involved. The fungus causes tissue discolouration of the floret progressively upward from the receptacle and the affected petals turn light brown. In most cases the fungus grows down into the peduncle for several cms causing it to turn black and weaken and finally droop. The fungus frequently infects unopened buds and their peduncles, darkening the bracts and stems tissue. Leaf infection is common on plants with diseased flowers resulting in irregular blotches 2-3 cm wide. On stems frequently black girdling lesions several cms long appear usually starting at a node (Baker, Dimock & Davis, 1949). Ray blight of chrysanthemums is one of the serious diseases of cut flowers (37, 702) and occurs in commercial plantings both on greenhouse and outdoor chrysanthemums (39, 79, 585) causing severe lossess (29, 215; 36, 102). Because of the seriousness of the disease, countries like Germany (42, 446) and Norway (43, 2217) had to amend their Plant Inspection ordinance and adopt stringent quarantine regulations so as to prohibit the importation of chrysanthemum cuttings or plants without certification of their derivation from mother plants. Recently, a computer simulator programme Mycos based on weather data has been designed and tested showing that the simulator can determine qualitatively seasons of high and low disease incidence (57, 2551). GEOGRAPHICAL DISTRIBUTION: Africa, Asia, Australasia & Oceania, Europe and North America (CMI Map 406, ed. 2, 1973). New records not mapped are: Europe (Austria, Italy, Northern Ireland). TRANSMISSION: By ascospores, conidia, mycelia and sclerotia dispersed during wet periods by rain splash, air currents and by workmen on clothing, tools or hands (Baker, Dimock & Davis, 1949). Ascospore discharge has been reported to be regulated by environmental factors such as moisture and, depending on the isolate, by light at a constant air temp. of 20°C. Water sprinkling or heavy dew have been claimed to induce explosive disharge of ascospores. Max. number of ascospores have been trapped in an outbreak of D. chrysanthemi blight in field grown chrysanthemums just after an evening thunder shower, while much lower concentrations have been present during dew periods at night (53, 1412). Ascospores have been observed to be discharged for a mean horizontal distance of 3.1 mm with a max. of 6.2 mm, requiring initial velocities of discharge of 21 and 50 m/sec., respectively. The terminal velocity of the ascospores has been calculated to be 1 × 10-3m/sec. (53, 1413). The fungus overwinters as mycelia or pycnidia or as developing pseudothecia. Pseudothecia which mature in late summer and autumn have been claimed to provide much of the primary inoculum for infection of developing buds and flowers in the autumn and winter (29, 215). Sclerotia of D. chrysanthemi buried in soil subjected to normal glasshouse watering were found dead after 30 weeks and those in compost were not pathogenic after 8 weeks (45, 3066). The fungus has been claimed to survive by colonizing the root surface of chrysanthemum cuttings and still remain pathogenic to unrooted cuttings after 12 weeks as an epiphyte on the roots. Survival on the colonized roots of other plants has been claimed to be not > 8 weeks. Also it has been claimed that the fungus is commonly distributed on rooted cuttings without causing symptoms and therefore passing inspection by growers and quarantine officers (46, 341). The thick-walled mycelium has been reported to help the fungus to survive adverse conditions (48, 328h). Cultures of the fungus maintained by storing agar blocks from the originals in tubes with 10 ml. sterile distilled water either at 1°C or 10-12°C for 20-25 months have been claimed to remain viable without loss of virulence (41, 374).


Plant Disease ◽  
2020 ◽  
Author(s):  
Fangmin Hao ◽  
Quanyu Zang ◽  
Weihong Ding ◽  
Erlei Ma ◽  
Yunping Huang ◽  
...  

Melon (Cucumis melo L.) is a member of the Cucurbitaceae family, an important economical and horticultural crop, which is widely grown in China. In May 2020, fruit rot disease with water-soaked lesions and pink molds on cantaloupe melons was observed in several greenhouses with 50% disease incidence in Ningbo, Zhejiang Province in China. In order to know the causal agent, diseased fruits were cut into pieces, surface sterilized for 1 min with 1% sodium hypochlorite (NaClO), 2 min with 75% ethyl alcohol, rinsed in sterile distilled water three times (Zhou et al. 2018), and then placed on potato dextrose agar (PDA) medium amended with streptomycin sulfate (100 μg/ml) plates at 25°C for 4 days. The growing hyphae were transferred to new PDA plates using the hyphal tip method, putative Fusarium colonies were purified by single-sporing. Twenty-five fungal isolates were obtained and formed red colonies with white aerial mycelia at 25°C for 7 days, which were identified as Fusarium isolates based on the morphological characteristics and microscopic examination. The average radial mycelial growth rate of Fusarium isolate Fa-25 was 11.44 mm/day at 25°C in the dark on PDA. Macroconidia were stout with curved apical and basal cells, usually with 4 to 6 septa, and 29.5 to 44.2 × 3.7 to 5.2 μm on Spezieller Nährstoffarmer agar (SNA) medium at 25°C for 10 days (Leslie and Summerell 2006). To identify the species, the internal transcribed spacer (ITS) region and translational elongation factor 1-alpha (TEF1-α) gene of the isolates were amplified and cloned. ITS and TEF1-α was amplified using primers ITS1/ITS4 and EF1/EF2 (O’Donnell et al. 1998), respectively. Sequences of ITS (545 bp, GenBank Accession No. MT811812) and TEF1-α (707 bp, GenBank Acc. No. MT856659) for isolate Fa-25 were 100% and 99.72% identical to those of F. asiaticum strains MSBL-4 (ITS, GenBank Acc. MT322117.1) and Daya350-3 (TEF1-α, GenBank Acc. KT380124.1) in GenBank, respectively. A phylogenetic tree was established based on the TEF1-α sequences of Fa-25 and other Fusarium spp., and Fa-25 was clustered with F. asiaticum. Thus, both morphological and molecular characterizations supported the isolate as F. asiaticum. To confirm the pathogenicity, mycelium agar plugs (6 mm in diameter) removed from the colony margin of a 2-day-old culture of strain Fa-25 were used to inoculate melon fruits. Before inoculation, healthy melon fruits were selected, soaked in 2% NaClO solution for 2 min, and washed in sterile water. After wounding the melon fruits with a sterile needle, the fruits were inoculated by placing mycelium agar plugs on the wounds, and mock inoculation with mycelium-free PDA plugs was used as control. Five fruits were used in each treatment. The inoculated and mock-inoculated fruits were incubated at 25°C with high relative humidity. Symptoms were observed on all inoculated melon fruits 10 days post inoculation, which were similar to those naturally infected fruits, whereas the mock-inoculated fruits remained symptomless. The fungus re-isolated from the diseased fruits resembled colony morphology of the original isolate. The experiment was conducted three times and produced the same results. To our knowledge, this is the first report of fruit rot of melon caused by F. asiaticum in China.


Plant Disease ◽  
2019 ◽  
Vol 103 (1) ◽  
pp. 44-50 ◽  
Author(s):  
Anthony P. Keinath ◽  
Timothy W. Coolong ◽  
Justin D. Lanier ◽  
Pingsheng Ji

Fusarium wilt of watermelon caused by Fusarium oxysporum f. sp. niveum is a serious, widespread disease of watermelon throughout the southern United States. To investigate whether soil temperature affects disease development, three cultivars of triploid watermelon were transplanted March 17 to 21, April 7 to 11, and April 26 to May 2 in 2015 and 2016 at Charleston, SC, and Tifton, GA into fields naturally infested with F. oxysporum f. sp. niveum. Incidence of Fusarium wilt was lower with late-season than with early and midseason transplanting in all four experiments (P ≤ 0.01). Cultivar Citation had more wilted plants than the cultivars Fascination and Melody in three of four experiments (P ≤ 0.05). In South Carolina, planting date did not affect weight and number of marketable fruit ≥4.5 kg apiece. In Georgia in 2016, weight and number of marketable fruit were greater with late transplanting than with early and midseason transplanting. In both states, yield and value for Fascination and Melody were higher than for Citation. Soil temperature averaged over the 4-week period after transplanting was negatively correlated with disease incidence for all four experiments (r = –0.737, P = 0.006). Transplanting after mid-April and choosing a cultivar with resistance to F. oxysporum f. sp. niveum race 1, like Fascination, or tolerance, like Melody, can help manage Fusarium wilt of watermelon and increase marketable yields in the southern United States.


Sign in / Sign up

Export Citation Format

Share Document