Aggressiveness of Spanish isolates of Xylella fastidiosa to almond plants of different cultivars under greenhouse conditions

2021 ◽  
Author(s):  
Aina Baró ◽  
Laura Montesinos ◽  
Esther Badosa ◽  
Emilio Montesinos

The aggressiveness of Spanish isolates of X. fastidiosa, representing different sequence types, were studied in almond plants of several cultivars by means of the dynamics of the population levels and symptoms, colonization and spread, and dose-response relationships. Pathogen dynamics in almond plants under greenhouse conditions showed doubling times of 2.1 to 2.5 days during the exponential growth phase, with a maximum population size around 35 dpi. A differential pattern in population dynamics was observed between sap and xylem tissue after the exponential growth, as population levels in the xylem tissue remained stable while viable cells in sap decreased. Population levels were higher in two upwards zones than in downwards zones, with respect to the inoculation area. The first symptoms were observed between 20 and 60 dpi, and disease severity increased over time at doubling times of 30 days, with a maximum observed at 120 dpi. Strains tested showed differences in population levels in the cultivars studied and were able to spread with different intensity from contaminated plant parts to new growing shoots after pruning. Two almond isolates showed a different performance in dose-response relationships when inoculated in Avijor cultivar. While IVIA 5387.2 reached higher population levels but showed high ED50 and MID values, IVIA 5901.2 showed low population levels as well as low ED50 and MID values. This study raises implications for the epidemiology of X. fastidiosa in almond crops, estimating doubling times of the pathogen in planta and of symptoms development, as well as showing differential aggressiveness between strains.

Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 365
Author(s):  
Chénangnon Frédéric Tovissodé ◽  
Jonas Têlé Doumatè ◽  
Romain Glèlè Kakaï

The widely used logistic model for epidemic case reporting data may be either restrictive or unrealistic in presence of containment measures when implemented after an epidemic outbreak. For flexibility in epidemic case reporting data modeling, we combined an exponential growth curve for the early epidemic phase with a flexible growth curve to account for the potential change in growth pattern after implementation of containment measures. We also fitted logistic regression models to recoveries and deaths from the confirmed positive cases. In addition, the growth curves were integrated into a SIQR (Susceptible, Infective, Quarantined, Recovered) model framework to provide an overview on the modeled epidemic wave. We focused on the estimation of: (1) the delay between the appearance of the first infectious case in the population and the outbreak (“epidemic latency period”); (2) the duration of the exponential growth phase; (3) the basic and the time-varying reproduction numbers; and (4) the peaks (time and size) in confirmed positive cases, active cases and new infections. The application of this approach to COVID-19 data from West Africa allowed discussion on the effectiveness of some containment measures implemented across the region.


2005 ◽  
Vol 41 (1) ◽  
pp. 40-43
Author(s):  
A. M. Veselovskii ◽  
A. Z. Metlitskaya ◽  
V. A. Lipasova ◽  
I. A. Bass ◽  
I. A. Khmel

Author(s):  
Jack Merrin

1AbstractAn automated statistical and error analysis of 45 countries or regions with more than 1000 cases of COVID-19 as of March 28, 2020, has been performed. This study reveals differences in the rate of disease spreading rate over time in different countries. This survey observes that most countries undergo a beginning exponential growth phase, which transitions into a power-law phase, as recently suggested by Ziff and Ziff. Tracking indicators of growth, such as the power-law exponent, are a good indication of the relative danger different countries are in and show when social measures are effective towards slowing the spread. The data compiled here are usefully synthesizing a global picture, identifying country to country variation in spreading, and identifying countries most at risk. This analysis may factor into how best to track the effectiveness of social distancing policies and quarantines in real-time as data is updated each day.


Microbiology ◽  
2009 ◽  
Vol 155 (9) ◽  
pp. 3021-3032 ◽  
Author(s):  
Aya Iida ◽  
Yasuo Ohnishi ◽  
Sueharu Horinouchi

The GinI/GinR quorum-sensing system represses oxidative fermentation, including acetic acid and gluconic acid fermentation, as well as antifoam activity in Gluconacetobacter intermedius NCI1051. An 89 aa protein, GinA, whose production is induced by the quorum-sensing system, represses both oxidative fermentation and antifoam activity via a still unknown mechanism, although an OmpA family protein, GmpA, as a target of the GinI/GinR quorum-sensing system via GinA, has been found to repress oxidative fermentation. In this study, four novel GinA-inducible genes (gltA, pdeA, pdeB and nagA) were identified and their involvement in oxidative fermentation and antifoam activity was examined by gene disruption. Disruption of nagA (which encodes a putative N-acetylglucosamine-6-phosphate deacetylase) decreased the growth rate in the exponential growth phase, indicating that nagA was required for the rapid growth of the strain. This unexpected finding revealed a new aspect of the GinI/GinR quorum-sensing system: it accelerates exponential growth by induction of nagA. In contrast, gltA (a putative glycosyltransferase) and pdeA (a putative cyclic-di-GMP phosphodiesterase) were shown to repress oxidative fermentation, including acetic acid and gluconic acid fermentation. gltA was also shown to repress antifoam activity. Disruption of pdeB (a putative phosphodiesterase/diguanylate cyclase) caused no phenotypic changes. Taking our previous results into consideration, these results showed an apparently complex mechanism for repressing oxidative fermentation by the quorum-sensing system; at least three GinA-inducible genes, gltA, pdeA and gmpA, were involved in the repression of oxidative fermentation by the GinI/GinR quorum-sensing system, the most characteristic feature of the acetic acid bacteria.


1979 ◽  
Vol 182 (2) ◽  
pp. 407-412 ◽  
Author(s):  
R J Allen ◽  
G K Scott

Isolated outer membranes and outer-membrane extracts from Escherichia coli ML308-225 in the early-exponential growth phase contain more protein than do corresponding preparations from late-exponential- or stationary-phase bacteria. Isotope-dilution experiments show that this is due to a loss of protein from the membrane during the exponential growth phase. Inhibition of bacterial growth and protein synthesis stabilizes the outer-membrane-protein concentration. Protein synthesis in the absence of bacterial growth results in higher concentrations of protein in the outer membrane.


2004 ◽  
Vol 186 (4) ◽  
pp. 910-918 ◽  
Author(s):  
C. V. Gallant ◽  
T. Ponnampalam ◽  
H. Spencer ◽  
J. C. D. Hinton ◽  
N. L. Martin

ABSTRACT Disulfide bond formation catalyzed by disulfide oxidoreductases occurs in the periplasm and plays a major role in the proper folding and integrity of many proteins. In this study, we were interested in elucidating factors that influence the regulation of dsbA, a gene coding for the primary disulfide oxidoreductase found in Salmonella enterica serovar Typhimurium. Strains with mutations created by transposon mutagenesis were screened for strains with altered expression of dsbA. A mutant (NLM2173) was found where maximal expression of a dsbA::lacZ transcriptional fusion occurred in the exponential growth phase in contrast to that observed in the wild type where maximal expression occurs in stationary phase. Sequence analysis of NLM2173 demonstrated that the transposon had inserted upstream of the gene encoding H-NS. Western immunoblot analysis using H-NS and StpA antibodies showed decreased amounts of H-NS protein in NLM2173, and this reduction in H-NS correlated with an increase of StpA protein. Northern blot analysis with a dsbA-specific probe showed an increase in dsbA transcript during exponential phase of growth. Direct binding of H-NS to the dsbA promoter region was verified using purified H-NS in electrophoretic mobility shift assays. Thus, a reduction in H-NS protein is correlated with a derepression of dsbA in NLM2173, suggesting that H-NS normally plays a role in suppressing the expression of dsbA during exponential phase growth.


1973 ◽  
Vol 13 (6) ◽  
pp. 523-528 ◽  
Author(s):  
E. M. Shulgovskaya ◽  
I. I. Ivanova ◽  
G. G. Sotnicov

2009 ◽  
Vol 191 (8) ◽  
pp. 2776-2782 ◽  
Author(s):  
Shin Kurihara ◽  
Yuichi Tsuboi ◽  
Shinpei Oda ◽  
Hyeon Guk Kim ◽  
Hidehiko Kumagai ◽  
...  

ABSTRACT The Puu pathway is a putrescine utilization pathway involving gamma-glutamyl intermediates. The genes encoding the enzymes of the Puu pathway form a gene cluster, the puu gene cluster, and puuP is one of the genes in this cluster. In Escherichia coli, three putrescine importers, PotFGHI, PotABCD, and PotE, were discovered in the 1990s and have been studied; however, PuuP had not been discovered previously. This paper shows that PuuP is a novel putrescine importer whose kinetic parameters are equivalent to those of the polyamine importers discovered previously. A puuP + strain absorbed up to 5 mM putrescine from the medium, but a ΔpuuP strain did not. E. coli strain MA261 has been used in previous studies of polyamine transporters, but PuuP had not been identified previously. It was revealed that the puuP gene of MA261 was inactivated by a point mutation. When E. coli was grown on minimal medium supplemented with putrescine as the sole carbon or nitrogen source, only PuuP among the polyamine importers was required. puuP was expressed strongly when putrescine was added to the medium or when the puuR gene, which encodes a putative repressor, was deleted. When E. coli was grown in M9-tryptone medium, PuuP was expressed mainly in the exponential growth phase, and PotFGHI was expressed independently of the growth phase.


BMC Genomics ◽  
2016 ◽  
Vol 17 (1) ◽  
Author(s):  
Yoo-Bok Cho ◽  
Eun Ju Lee ◽  
Suhyung Cho ◽  
Tae Yong Kim ◽  
Jin Hwan Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document