scholarly journals H-NS Represses Salmonella enterica Serovar Typhimurium dsbA Expression during Exponential Growth

2004 ◽  
Vol 186 (4) ◽  
pp. 910-918 ◽  
Author(s):  
C. V. Gallant ◽  
T. Ponnampalam ◽  
H. Spencer ◽  
J. C. D. Hinton ◽  
N. L. Martin

ABSTRACT Disulfide bond formation catalyzed by disulfide oxidoreductases occurs in the periplasm and plays a major role in the proper folding and integrity of many proteins. In this study, we were interested in elucidating factors that influence the regulation of dsbA, a gene coding for the primary disulfide oxidoreductase found in Salmonella enterica serovar Typhimurium. Strains with mutations created by transposon mutagenesis were screened for strains with altered expression of dsbA. A mutant (NLM2173) was found where maximal expression of a dsbA::lacZ transcriptional fusion occurred in the exponential growth phase in contrast to that observed in the wild type where maximal expression occurs in stationary phase. Sequence analysis of NLM2173 demonstrated that the transposon had inserted upstream of the gene encoding H-NS. Western immunoblot analysis using H-NS and StpA antibodies showed decreased amounts of H-NS protein in NLM2173, and this reduction in H-NS correlated with an increase of StpA protein. Northern blot analysis with a dsbA-specific probe showed an increase in dsbA transcript during exponential phase of growth. Direct binding of H-NS to the dsbA promoter region was verified using purified H-NS in electrophoretic mobility shift assays. Thus, a reduction in H-NS protein is correlated with a derepression of dsbA in NLM2173, suggesting that H-NS normally plays a role in suppressing the expression of dsbA during exponential phase growth.

2005 ◽  
Vol 71 (10) ◽  
pp. 6008-6013 ◽  
Author(s):  
Domitille Fayol-Messaoudi ◽  
Cédric N. Berger ◽  
Marie-Hélène Coconnier-Polter ◽  
Vanessa Liévin-Le Moal ◽  
Alain L. Servin

ABSTRACT The mechanism(s) underlying the antibacterial activity of probiotic Lactobacillus strains appears to be multifactorial and includes lowering of the pH and the production of lactic acid and of antibacterial compounds, including bacteriocins and nonbacteriocin, non-lactic acid molecules. Addition of Dulbecco's modified Eagle's minimum essential medium to the incubating medium delays the killing activity of lactic acid. We found that the probiotic strains Lactobacillus johnsonii La1, Lactobacillus rhamnosus GG, Lactobacillus casei Shirota YIT9029, L. casei DN-114 001, and L. rhamnosus GR1 induced a dramatic decrease in the viability of Salmonella enterica serovar Typhimurium SL1344 mainly attributable to non-lactic acid molecule(s) present in the cell-free culture supernatant (CFCS). These molecules were more active against serovar Typhimurium SL1344 in the exponential growth phase than in the stationary growth phase. We also showed that the production of the non-lactic acid substance(s) responsible for the killing activity was dependent on growth temperature and that both unstable and stable substances with killing activity were present in the CFCSs. We found that the complete inhibition of serovar Typhimurium SL1344 growth results from a pH-lowering effect.


Microbiology ◽  
2014 ◽  
Vol 160 (2) ◽  
pp. 243-260 ◽  
Author(s):  
Öykü İrigül-Sönmez ◽  
Türkan E. Köroğlu ◽  
Büşra Öztürk ◽  
Ákos T. Kovács ◽  
Oscar P. Kuipers ◽  
...  

The lutR gene, encoding a product resembling a GntR-family transcriptional regulator, has previously been identified as a gene required for the production of the dipeptide antibiotic bacilysin in Bacillus subtilis. To understand the broader regulatory roles of LutR in B. subtilis, we studied the genome-wide effects of a lutR null mutation by combining transcriptional profiling studies using DNA microarrays, reverse transcription quantitative PCR, lacZ fusion analyses and gel mobility shift assays. We report that 65 transcriptional units corresponding to 23 mono-cistronic units and 42 operons show altered expression levels in lutR mutant cells, as compared with lutR + wild-type cells in early stationary phase. Among these, 11 single genes and 25 operons are likely to be under direct control of LutR. The products of these genes are involved in a variety of physiological processes associated with the onset of stationary phase in B. subtilis, including degradative enzyme production, antibiotic production and resistance, carbohydrate utilization and transport, nitrogen metabolism, phosphate uptake, fatty acid and phospholipid biosynthesis, protein synthesis and translocation, cell-wall metabolism, energy production, transfer of mobile genetic elements, induction of phage-related genes, sporulation, delay of sporulation and cannibalism, and biofilm formation. Furthermore, an electrophoretic mobility shift assay performed in the presence of both SinR and LutR revealed a close overlap between the LutR and SinR targets. Our data also revealed a significant overlap with the AbrB regulon. Together, these findings reveal that LutR is part of the global complex, interconnected regulatory systems governing adaptation of bacteria to the transition from exponential growth to stationary phase.


Microbiology ◽  
2014 ◽  
Vol 160 (11) ◽  
pp. 2366-2373 ◽  
Author(s):  
Laura J. V. Piddock

There are numerous genes in Salmonella enterica serovar Typhimurium that can confer resistance to fluoroquinolone antibiotics, including those that encode topoisomerase proteins, the primary targets of this class of drugs. However, resistance is often multifactorial in clinical isolates and it is not uncommon to also detect mutations in genes that affect the expression of proteins involved in permeability and multi-drug efflux. The latter mechanism, mediated by tripartite efflux systems, such as that formed by the AcrAB–TolC system, confers inherent resistance to many antibiotics, detergents and biocides. Genetic inactivation of efflux genes gives multi-drug hyper-susceptibility, and in the absence of an intact AcrAB–TolC system some chromosomal and transmissible antibiotic resistance genes no longer confer clinically relevant levels of resistance. Furthermore, a functional multi-drug resistance efflux pump, such as AcrAB–TolC, is required for virulence and the ability to form a biofilm. In part, this is due to altered expression of virulence and biofilm genes being sensitive to efflux status. Efflux pump expression can be increased, usually due to mutations in regulatory genes, and this confers resistance to clinically useful drugs such as fluoroquinolones and β-lactams. Here, I discuss some of the work my team has carried out characterizing the mechanisms of antibiotic resistance in Salmonella enterica serovar Typhimurium from the late 1980s to 2014. A video of this Prize Lecture, presented at the Society for General Microbiology Annual Conference 2014, can be viewed via this link: https://www.youtube.com/watch?v=MCRumMV99Yw.


Microbiology ◽  
2009 ◽  
Vol 155 (8) ◽  
pp. 2490-2497 ◽  
Author(s):  
F. Gil ◽  
I. Hernández-Lucas ◽  
R. Polanco ◽  
N. Pacheco ◽  
B. Collao ◽  
...  

OmpW of Salmonella enterica serovar Typhimurium has been described as a minor porin involved in osmoregulation, and is also affected by environmental conditions. Biochemical and genetic evidence from our laboratory indicates that OmpW is involved in efflux of and resistance towards paraquat (PQ), and its expression has been shown to be activated in response to oxidative stress. In this study we have explored ompW expression in response to PQ. Primer extension and transcriptional fusions showed that its expression was induced in the presence of PQ. In silico analyses suggested a putative binding site for the SoxS transcriptional factor at the ompW regulatory region. Electrophoretic mobility shift assays (EMSAs) and footprinting experiments showed that SoxS binds at a region that starts close to −54 and ends at about −197 upstream of the transcription start site. Transcriptional fusions support the relevance of this region in ompW activation. The SoxS site is in the forward orientation and its location suggests that the ompW gene has a class I SoxS-dependent promoter.


2016 ◽  
Vol 198 (16) ◽  
pp. 2166-2179 ◽  
Author(s):  
Allison Herman ◽  
Jacquelyn Serfecz ◽  
Alexandra Kinnally ◽  
Kathleen Crosby ◽  
Matthew Youngman ◽  
...  

ABSTRACTTheiprAgene (formerly known asyaiVor STM0374) is located in a two-gene operon in theSalmonella entericaserovar Typhimurium genome and is associated with altered expression during spaceflight and rotating-wall-vessel culture conditions that increase virulence. However,iprAis uncharacterized in the literature. In this report, we present the first targeted characterization of this gene, which revealed thatiprAis highly conserved acrossEnterobacteriaceae. We found thatS. Typhimurium,Escherichia coli, andEnterobacter cloacaeΔiprAmutant strains display a multi-log-fold increase in oxidative stress resistance that is complemented using a plasmid-borne wild-type (WT) copy of theS. TyphimuriumiprAgene. This observation was also associated with increased catalase activity, increasedS. Typhimurium survival in macrophages, and partial dependence on thekatEgene and full dependence on therpoSgene. Our results indicate that IprA protein activity is sensitive to deletion of the N- and C-terminal 10 amino acids, while a region that includes amino acids 56 to 80 is dispensable for activity. RNA sequencing (RNA-Seq) analysis revealed several genes altered in expression in theS. Typhimurium ΔiprAmutant strain compared to the WT, including those involved in fimbria formation,spvABCD-mediated virulence, ethanolamine utilization, the phosphotransferase system (PTS) transport, and flagellin phase switching from FlgB to FliC (likely a stochastic event) and several genes of hypothetical or putative function.IMPORTANCEOverall, this work reveals that the conservediprAgene measurably influences bacterial biology and highlights the pool of currently uncharacterized genes that are conserved across bacterial genomes. These genes represent potentially useful targets for bacterial engineering, vaccine design, and other possible applications.


2006 ◽  
Vol 188 (23) ◽  
pp. 8160-8168 ◽  
Author(s):  
Roberto Balbontín ◽  
Gary Rowley ◽  
M. Graciela Pucciarelli ◽  
Javier López-Garrido ◽  
Yvette Wormstone ◽  
...  

ABSTRACT Transcriptomic analyses during growth in Luria-Bertani medium were performed in strain SL1344 of Salmonella enterica serovar Typhimurium and in two isogenic derivatives lacking Dam methylase. More genes were repressed than were activated by Dam methylation (139 versus 37). Key genes that were differentially regulated by Dam methylation were verified independently. The largest classes of Dam-repressed genes included genes belonging to the SOS regulon, as previously described in Escherichia coli, and genes of the SOS-inducible Salmonella prophages ST64B, Gifsy-1, and Fels-2. Dam-dependent virulence-related genes were also identified. Invasion genes in pathogenicity island SPI-1 were activated by Dam methylation, while the fimbrial operon std was repressed by Dam methylation. Certain flagellar genes were repressed by Dam methylation, and Dam− mutants of S. enterica showed reduced motility. Altered expression patterns in the absence of Dam methylation were also found for the chemotaxis genes cheR (repressed by Dam) and STM3216 (activated by Dam) and for the Braun lipoprotein gene, lppB (activated by Dam). The requirement for DNA adenine methylation in the regulation of specific virulence genes suggests that certain defects of Salmonella Dam− mutants in the mouse model may be caused by altered patterns of gene expression.


2009 ◽  
Vol 191 (23) ◽  
pp. 7253-7259 ◽  
Author(s):  
Charlotte A. Perrett ◽  
Michail H. Karavolos ◽  
Suzanne Humphrey ◽  
Pietro Mastroeni ◽  
Isabel Martinez-Argudo ◽  
...  

ABSTRACT Bacterial species can communicate by producing and sensing small autoinducer molecules by a process known as quorum sensing. Salmonella enterica produces autoinducer 2 (AI-2) via the luxS synthase gene, which is used by some bacterial pathogens to coordinate virulence gene expression with population density. We investigated whether the luxS gene might affect the ability of Salmonella enterica serovar Typhimurium to invade epithelial cells. No differences were found between the wild-type strain of S. Typhimurium, SL1344, and its isogenic luxS mutant with respect to the number and morphology of the membrane ruffles induced or their ability to invade epithelial cells. The dynamics of the ruffling process were also similar in the wild-type strain (SL1344) and the luxS mutant. Furthermore, comparing the Salmonella pathogenicity island 1 (SPI-1) type 3 secretion profiles of wild-type SL1344 and the luxS mutant by Western blotting and measuring the expression of a single-copy green fluorescent protein fusion to the prgH (an essential SPI-1 gene) promoter indicated that SPI-1 expression and activity are similar in the wild-type SL1344 and luxS mutant. Genetic deletion of luxS did not alter the virulence of S. Typhimurium in the mouse model, and therefore, it appears that luxS does not play a significant role in regulating invasion of Salmonella in vitro or in vivo.


2006 ◽  
Vol 74 (10) ◽  
pp. 5914-5925 ◽  
Author(s):  
Gábor Nagy ◽  
Vittoria Danino ◽  
Ulrich Dobrindt ◽  
Mark Pallen ◽  
Roy Chaudhuri ◽  
...  

ABSTRACT Mutants of Salmonella enterica serovar Typhimurium that lack the transcriptional regulator RfaH are efficient as live oral vaccines against salmonellosis in mice. We show that the attenuation of the vaccine candidate strain is associated with reduced net growth in epithelial and macrophage cells. In order to identify the relevant RfaH-dependent genes, the RfaH regulon was determined with S. enterica serovars Enteritidis and Typhimurium using whole-genome Salmonella microarrays. As well as impacting the expression of genes involved in lipopolysaccharide (LPS) core and O-antigen synthesis, the loss of RfaH results in a marked down-regulation of SPI-4 genes, the flagellum/chemotaxis system, and type III secretion system 1. However, a proportion of these effects could have been the indirect consequence of the altered expression of genes required for LPS biosynthesis. Direct and indirect effects of the rfaH mutation were dissociated by genome-wide transcriptional profiling of a structural deep-rough LPS mutant (waaG). We show that truncation of LPS itself is responsible for the decreased intracellular yield observed for ΔrfaH strains. LPS mutants do not differ in replication ability; rather, they show increased susceptibility to antimicrobial peptides in the intracellular milieu. On the other hand, evidence that deletion of rfaH, as well as some other genes involved in LPS biosynthesis, results in enhanced invasion of various mammalian cells is shown. Exposure of common minor antigens in the absence of serovar-specific antigens might be responsible for the observed cross-reactive nature of the elicited immune response upon vaccination. Increased invasiveness of the Salmonella rfaH mutant into antigen-presenting cells, combined with increased intracellular killing and the potential for raising a cross-protective immune response, renders the rfaH mutant an ideal vaccine candidate.


2007 ◽  
Vol 190 (3) ◽  
pp. 1152-1156 ◽  
Author(s):  
Aitziber Vivero ◽  
Rosa C. Baños ◽  
Javier F. Mariscotti ◽  
Juan Carlos Oliveros ◽  
Francisco García-del Portillo ◽  
...  

ABSTRACT We describe a transcriptomic study of the effect of hha and ydgT mutations in Salmonella enterica serovar Typhimurium. A large number of genes showing altered expression are located in AT-rich horizontally acquired DNA sequences. Many of these genes have also been reported to be targets for H-NS. As Hha and YdgT interact with H-NS, our findings strongly suggest that Hha and/or YdgT must form complexes with H-NS when they silence these DNA regions.


2008 ◽  
Vol 190 (19) ◽  
pp. 6340-6350 ◽  
Author(s):  
Jae-Ho Jeong ◽  
Miryoung Song ◽  
Sang-Ik Park ◽  
Kyoung-Oh Cho ◽  
Joon Haeng Rhee ◽  
...  

ABSTRACT To elucidate the pathogenic mechanism of Salmonella enterica serovar Gallinarum, we examined the expression of the genes encoded primarily in Salmonella pathogenicity island 1 (SPI-1) and SPI-2. These genes were found to be induced as cultures entered stationary phase under high- and low-oxygen growth conditions, as also observed for Salmonella serovar Typhimurium. In contrast, Salmonella serovar Gallinarum in the exponential growth phase most efficiently internalized cultured animal cells. Analysis of mutants defective in SPI-1 genes, SPI-2 genes, and others implicated in early stages of infection revealed that SPI-1 genes were not involved in the internalization of animal cells by Salmonella serovar Gallinarum. Following entry, however, Salmonella serovar Gallinarum was found to reside in LAMP1-positive vacuoles in both phagocytic and nonphagocytic cells, although internalization was independent of SPI-1. A mutation that conferred defects in ppGpp synthesis was the only one found to affect animal cell internalization by Salmonella serovar Gallinarum. It was concluded that Salmonella serovar Gallinarum internalizes animal cells by a mechanism independent of SPI-1 genes but dependent on ppGpp. Intracellular growth also required ppGpp for the transcription of genes encoded in SPI-2.


Sign in / Sign up

Export Citation Format

Share Document