scholarly journals Synergistic Effect of Dazomet Soil Fumigation and Clonostachys rosea Against Cucumber Fusarium Wilt

2014 ◽  
Vol 104 (12) ◽  
pp. 1314-1321 ◽  
Author(s):  
Tian Tian ◽  
Shi-Dong Li ◽  
Man-Hong Sun

Soil fumigation and biological control are two control measures frequently used against soilborne diseases. In this study, the chemical fumigant dazomet was applied in combination with the biocontrol agent (BCA) Clonostachys rosea 67-1 to combat cucumber wilt caused by Fusarium oxysporum f. sp. cucumerinum KW2-1. When the mycoparasite C. rosea 67-1 was applied after dazomet fumigation, disease control reached 100%, compared with 88.1 and 69.8% for dazomet and 67-1 agent, respectively, applied alone, indicating a synergistic effect of dazomet and C. rosea in combating cucumber Fusarium wilt based on analysis of Bliss Independence. To understand the synergistic mechanism, the effects of chemical fumigation on the colonization potential and activity of F. oxysporum f. sp. cucumerinum, and the interaction between the BCA and the pathogen were investigated. The results showed that growth of the pathogen decreased with increasing dazomet concentration subsequent to fumigation. When exposed to dazomet at 100 ppm, the fungal sporulation rate decreased by 94.4%. Severe damage was observed in fumigated isolates using scanning electron microscopy. In the greenhouse, disease incidence of cucumber caused by fumigated F. oxysporum f. sp. cucumerinum significantly decreased. Whereas germination of C. rosea 67-1 spores increased by >sixfold in fumigated soil, and its ability to parasitize fumigated F. oxysporum f. sp. cucumerinum significantly increased (P = 0.014).

Plant Disease ◽  
1999 ◽  
Vol 83 (11) ◽  
pp. 1073-1073 ◽  
Author(s):  
G. Magnano di San Lio ◽  
S. O. Cacciola ◽  
A. Pane

Muskmelon (Cucumis melo L.) is very important economically to agriculture in Italy. The Sicily area accounts for ≈40% of the total muskmelon production. Fusarium wilt caused by Fusarium oxysporum f. sp. melonis (Leach & Currence) W.C. Snyder & H.N. Hans. is the most prevalent and damaging disease of muskmelon in Sicily. Use of cultivars with major resistance genes, Fom 1 and Fom 2, is the most effective control measure for combating the disease. During March 1999, severe infections of Fusarium wilt were noted in a commercial muskmelon crop, cv. Firmo F1, grown in plastic tunnels in Syracuse Province (eastern Sicily). The muskmelon seedlings had been transplanted into the tunnels during January 20 days after soil fumigation with methyl bromide. Firmo F1 possesses both Fom 1 and Fom 2 genes. Of 18,000 Firmo F1 plants, ≈6,500 showed symptoms consisting of stunting, vein clearing; leaf yellowing, wilting, and dying; brown necrotic streak; and gummy exudates on the basal portion of vines. A pinkish white mold developed on dead tissues when infected plants were kept at high relative humidity. The pathogenicity of both a single-conidium isolate of F. oxysporum f. sp. melonis from a symptomatic Firmo F1 plant and two isolates of races 0 and 1, recovered previously from other cultivars in Sicily and used as references, was tested with three differential muskmelon cultivars, Charentais T, Doublon, and CM 17187 (1), as well as three commercial cultivars, Ramon, Cassella, and Geamar (possessing Fom 1, Fom 2, and both Fom 1 and Fom 2 resistance genes, respectively). Muskmelon seedlings were inoculated by the root-dip method (3), using a suspension of 5 × 105 conidia per ml. Inoculated seedlings were transplanted to plastic pots filled with sterilized soil and placed in a greenhouse (25 to 30°C). Symptoms were scored 7 to 10 days after inoculation. The isolate from Firmo F1 was pathogenic to all cultivars tested, the race 0 isolate was pathogenic only to cv. Charentais T, and the race 1 isolate was pathogenic only to cvs. Charentais T, Doublon, and Ramon. F. oxysporum was reisolated from symptomatic plants. Based on its pathogenicity and symptomology, the isolate from Firmo F1 was classified as race 1,2y (yellows), according to the nomenclature proposed by Risser et al. (1). Race 1,2 poses a serious threat to muskmelon production in Sicily, because all currently used cultivars are susceptible to the race, and other control measures, such as preplant soil fumigation with methyl bromide and solarization, are not as effective as use of resistant cultivars. Further study is needed to establish which is the prevalent race of F. oxysporum f. sp. melonis in Sicily. This report confirms that race 1,2 occurs in all major muskmelon-production areas in Italy (2). References: (1) G. Risser et al. Phytopathology 66:1105, 1976. (2) G. Tamietti et al. Petria 4:103, 1994. (3) F. L. Wellman. Phytopathology 29:945, 1939.


2021 ◽  
Vol 312 ◽  
pp. 107336
Author(s):  
An-Hui Ge ◽  
Zhi-Huai Liang ◽  
Ji-Ling Xiao ◽  
Yi Zhang ◽  
Qing Zeng ◽  
...  

1987 ◽  
Vol 33 (5) ◽  
pp. 349-353 ◽  
Author(s):  
T. C. Paulitz ◽  
C. S. Park ◽  
R. Baker

Nonpathogenic isolates of Fusarium oxysporum were obtained from surface-disinfested, symptomless cucumber roots grown in two raw (nonautoclaved) soils. These isolates were screened for pathogenicity and biological control activity against Fusarium wilt of cucumber in raw soil infested with Fusarium oxysporum f. sp. cucumerinum (F.o.c.). The influence of three isolates effective in inducing suppressiveness and three ineffective isolates on disease incidence over time was tested. The effective isolates reduced the infection rate (R), based on linear regressions of data transformed to loge (1/1 – y). Effective isolate C5 was added to raw soil infested with various inoculum densities of F.o.c. In treatments without C5, the increase in inoculum densities of F.o.c. decreased the incubation period of wilt disease, but there was no significant difference in infection rate among the inoculum density treatments. Isolate C5 reduced the infection rate at all inoculum densities of F.o.c. Various inoculum densities of C5 were added to raw soils infested with 1000 cfu/g of F.o.c. In the first trial, infection rates were reduced only in the treatment with 10 000 cfu/g of C5; in the second trial, infection rates were reduced in treatments with 10 000 and 30 000 cfu/g of C5.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Kamel Kamal Sabet ◽  
Magdy Mohamed Saber ◽  
Mohamed Adel-Aziz El-Naggar ◽  
Nehal Samy El-Mougy ◽  
Hatem Mohamed El-Deeb ◽  
...  

Five commercial composts were evaluated to suppress the root-rot pathogens (Fusarium solani (Mart.) App. and Wr, Pythium ultimum Trow, Rhizoctonia solani Kuhn, and Sclerotium rolfsii Sacc.) of cucumber plants under in vitro and greenhouse conditions. In vitro tests showed that all tested unautoclaved and unfiltrated composts water extracts (CWEs) had inhibitor effect against pathogenic fungi, compared to autoclaved and filtrated ones. Also, the inhibitor effects of 40 bacteria and 15 fungi isolated from composts were tested against the mycelial growth of cucumber root-rot pathogens. Twenty two bacteria and twelve fungal isolates had antagonistic effect against root-rot pathogens. The antagonistic fungal isolates were identified as 6 isolates belong to the genus Aspergillus spp., 5 isolates belong to the genus Penicillium spp. and one isolate belong to the genus Chaetomium spp. Under greenhouse conditions, the obtained results in pot experiment using artificial infested soil with cucumber root-rot pathogens showed that the compost amended soil reduced the percentage of disease incidence, pathogenic fungi population, and improved the cucumber vegetative parameters as shoot length, root length, fresh weight, and dry weight. These results suggested that composts are consequently considered as control measure against cucumber root-rot pathogens.


Plant Disease ◽  
2019 ◽  
Vol 103 (2) ◽  
pp. 249-258 ◽  
Author(s):  
Miloš Stevanović ◽  
Danijela Ristić ◽  
Svetlana Živković ◽  
Goran Aleksić ◽  
Ivana Stanković ◽  
...  

Blackberry cane diseases with the symptoms of necrosis, canker, and wilting are caused by several fungi worldwide. Surveys conducted from 2013 to 2016 in Serbia revealed the occurrence of Gnomoniopsis idaeicola, the causal agent of cane canker and wilting, which was found to be distributed in almost half of the surveyed orchards, in three blackberry cultivars, and with disease incidence of up to 80%. Wide distribution and high disease incidence suggest that G. idaeicola has been present in Serbia for some time. Out of 427 samples, a total of 65 G. idaeicola isolates were obtained (isolation rate of 34.19%). Reference isolates, originating from different localities, were conventionally and molecularly identified and characterized. G. idaeicola was detected in single and mixed infections with fungi from genera Paraconiothyrium, Colletotrichum, Diaporthe, Botryosphaeria, Botrytis, Septoria, Neofusicoccum, and Discostroma, and no diagnostically specific symptoms could be related directly to the G. idaeicola infection. In orchards solely infected with G. idaeicola, blackberry plant mortality was up to 40%, and yield loses were estimated at 50%. G. idaeicola isolates included in this study demonstrated intraspecies diversity in morphological, biological, pathogenic, and molecular features, which indicates that population in Serbia may be of different origin. This is the first record of a massive outbreak of G. idaeicola infection, illustrating its capability of harmful influence on blackberry production. This study represents the initial step in studying G. idaeicola as a new blackberry pathogen in Serbia, aiming at developing efficient control measures.


2019 ◽  
Vol 109 (4) ◽  
pp. 571-581 ◽  
Author(s):  
Xingkai Cheng ◽  
Xiaoxue Ji ◽  
Yanzhen Ge ◽  
Jingjing Li ◽  
Wenzhe Qi ◽  
...  

Stalk rot is one of the most serious and widespread diseases in maize, and effective control measures are currently lacking. Therefore, this study aimed to develop a new biological agent to manage this disease. An antagonistic bacterial strain, TA-1, was isolated from rhizosphere soil and identified as Bacillus methylotrophicus based on morphological and biochemical characterization and 16S ribosomal RNA and gyrB gene sequence analyses. TA-1 exhibited a strong antifungal effect on the growth of Fusarium graminearum mycelium, with 86.3% inhibition at a concentration of 108 CFU per ml. Transmission electron microscopy showed that TA-1 could disrupt the cellular structure of the fungus, induce necrosis, and degrade the cell wall. Greenhouse and field trials were performed to evaluate the biocontrol efficacy of TA-1 on maize stalk rot, and the results of greenhouse experiment revealed that the bacterium significantly reduced disease incidence and disease index. Seeds treated with a 108 CFU ml−1 cell suspension had the highest disease suppression at 86.8%. Results of field trials show that seed bacterization with TA-1 could not only reduce maize stalk rot incidence but also increase maize height, stem diameter, and grain yield. The lipopeptide antibiotics were isolated from the culture supernatants of TA-1 and identified as surfactins and iturins. Consequently, B. methylotrophicus TA-1 is a potential biocontrol agent against maize stalk rot.


2019 ◽  
Author(s):  
P Sayago ◽  
F Juncosa ◽  
A Albarracín Orio ◽  
D.F. Luna ◽  
G Molina ◽  
...  

AbstractSoil-borne pathogen Setophoma terrestris is the causal agent of pink root of onion, one of the most challenging diseases in onion production. Conventional approaches for managing the disease like solarization, soil fumigation and crop rotation have not been proven effective enough. In this work, we evaluated the biocontrol capacity of Bacillus subtilis ALBA01 (BsA01) against S. terrestris, in a highly susceptible onion cultivar, both under greenhouse and field conditions. Disease incidence and severity were evaluated together with growth, photosynthesis among other physiological variables and yield parameters. When compared with plants infected with the pathogen, those plants co-inoculated with BsA01 showed significantly less damage and levels of biocontrol above 50%. With regard to physiological parameters, plants challenged with S terrestris and inoculated with BsA01 performed as well as the control non-infected plants revealing a growth promotion effect of BsA01 on onion plants.


Author(s):  
M. Sangeetha ◽  
K. Indhumathi ◽  
P. S. Shanmugam

Chickpea is an important pulse crop grown during rabi season in black soil areas of Dharmapuri District. Among the various biotic and abiotic factors, the drought stress and fusarium wilt disease incidence are the major problems that reduces the chickpea yield to a greater extent. To overcome the above problems, the varieties viz., JAKI 9218 and GBM 2 were studied in comparison with farmers practice i.e., CO 4 for identification of suitable drought and disease tolerant high yielding variety for prevailing rainfed condition. The results revealed that JAKI 9218 and GBM 2 were found promising under rainfed condition and recorded the grain yield of 1008 and 933 kg/ha as compared to 808 kg/ha in CO 4. The variety JAKI 9218 proved to be superior with a yield increase of 24.7 per cent over CO 4 and 8.04 per cent over GBM 2. The pod borer and fusarium wilt disease incidence were lower in the variety JAKI 9218. The highest net income of Rs. 22158 /- and benefit cost ratio of 2.16 was realized in JAKI 9218 and the lowest net income of Rs. 13958 /- and benefit cost ratio of 1.77 was realized in farmers practice i.e., CO 4. It is concluded from the study that the chickpea variety JAKI 9218 can be recommended for large scale cultivation under rainfed condition of Dharmapuri district for realizing higher return by the farmers.


2020 ◽  
Vol 33 (2) ◽  
Author(s):  
Eugene Lam ◽  
Jennifer B. Rosen ◽  
Jane R. Zucker

SUMMARY Mumps is an acute viral infection characterized by inflammation of the parotid and other salivary glands. Persons with mumps are infectious from 2 days before through 5 days after parotitis onset, and transmission is through respiratory droplets. Despite the success of mumps vaccination programs in the United States and parts of Europe, a recent increase in outbreaks of mumps virus infections among fully vaccinated populations has been reported. Although the effectiveness of the mumps virus component of the measles-mumps-rubella (MMR) vaccine is suboptimal, a range of contributing factors has led to these outbreaks occurring in high-vaccination-coverage settings, including the intensity of exposure, the possibility of vaccine strain mismatch, delayed implementation of control measures due to the timeliness of reporting, a lack of use of appropriate laboratory tests (such as reverse transcription-PCR), and time since last vaccination. The resurgence of mumps virus infections among previously vaccinated individuals over the past decade has prompted discussions about new strategies to mitigate the risk of future outbreaks. The decision to implement a third dose of the MMR vaccine in response to an outbreak should be considered in discussions with local public health agencies. Traditional public health measures, including the isolation of infectious persons, timely contact tracing, and effective communication and awareness education for the public and medical community, should remain key interventions for outbreak control. Maintaining high mumps vaccination coverage remains key to U.S. and global efforts to reduce disease incidence and rates of complications.


Sign in / Sign up

Export Citation Format

Share Document