scholarly journals Genome Sequence and Comparative Analysis of Colletotrichum gloeosporioides Isolated from Liriodendron Leaves

2020 ◽  
Vol 110 (7) ◽  
pp. 1260-1269
Author(s):  
Fang-Fang Fu ◽  
Zhaodong Hao ◽  
Pengkai Wang ◽  
Ye Lu ◽  
Liang-Jiao Xue ◽  
...  

Colletotrichum gloeosporioides is a hemibiotrophic pathogen causing significant losses to economically important crops and forest trees, including Liriodendron. To explore the interaction between C. gloeosporioides and Liriodendron and to identify the candidate genes determining the pathogenesis, we sequenced and assembled the whole genome of C. gloeosporioides Lc1 (CgLc1) using PacBio and Illumina next generation sequencing and performed a comparative genomic analysis between CgLc1 and Cg01, the latter being a described endophytic species of the C. gloeosporioides complex. Gene structure prediction identified 15,744 protein-coding genes and 837 noncoding RNAs. Species-specific genes were characterized using an ortholog analysis followed by a pathway enrichment analysis, which showed that genes specific to CgLc1 were enriched for the arginine biosynthetic process. Furthermore, genome synteny analysis revealed that most of the protein-coding genes fell into collinear blocks. However, two clusters of polyketide synthase genes were identified to be specific for CgLc1, suggesting that they might have an important role in virulence control. Transcriptional regulators coexpressed with polyketide synthase genes were detected through a Weighted Correlation Network Analysis. Taken together, this work provides new insight into the virulence- and pathogenesis-associated genes present in C. gloeosporioides and its possible lifestyle.

2019 ◽  
Vol 9 (10) ◽  
pp. 3057-3066 ◽  
Author(s):  
Eoin O’Connor ◽  
Jamie McGowan ◽  
Charley G. P. McCarthy ◽  
Aniça Amini ◽  
Helen Grogan ◽  
...  

Agaricus bisporus is an extensively cultivated edible mushroom. Demand for cultivation is continuously growing and difficulties associated with breeding programs now means strains are effectively considered monoculture. While commercial growing practices are highly efficient and tightly controlled, the over-use of a single strain has led to a variety of disease outbreaks from a range of pathogens including bacteria, fungi and viruses. To address this, the Agaricus Resource Program (ARP) was set up to collect wild isolates from diverse geographical locations through a bounty-driven scheme to create a repository of wild Agaricus germplasm. One of the strains collected, Agaricus bisporus var. bisporus ARP23, has been crossed extensively with white commercial varieties leading to the generation of a novel hybrid with a dark brown pileus commonly referred to as ‘Heirloom’. Heirloom has been successfully implemented into commercial mushroom cultivation. In this study the whole genome of Agaricus bisporus var. bisporus ARP23 was sequenced and assembled with Illumina and PacBio sequencing technology. The final genome was found to be 33.49 Mb in length and have significant levels of synteny to other sequenced Agaricus bisporus strains. Overall, 13,030 putative protein coding genes were located and annotated. Relative to the other A. bisporus genomes that are currently available, Agaricus bisporus var. bisporus ARP23 is the largest A. bisporus strain in terms of gene number and genetic content sequenced to date. Comparative genomic analysis shows that the A. bisporus mating loci in unifactorial and unsurprisingly highly conserved between strains. The lignocellulolytic gene content of all A. bisporus strains compared is also very similar. Our results show that the pangenome structure of A. bisporus is quite diverse with between 60–70% of the total protein coding genes per strain considered as being orthologous and syntenically conserved. These analyses and the genome sequence described herein are the starting point for more detailed molecular analyses into the growth and phenotypical responses of Agaricus bisporus var. bisporus ARP23 when challenged with economically important mycoviruses.


2020 ◽  
Author(s):  
Kumari Sonal Choudhary ◽  
Eoin Fahy ◽  
Kevin Coakley ◽  
Manish Sud ◽  
Mano R Maurya ◽  
...  

ABSTRACTWith the advent of high throughput mass spectrometric methods, metabolomics has emerged as an essential area of research in biomedicine with the potential to provide deep biological insights into normal and diseased functions in physiology. However, to achieve the potential offered by metabolomics measures, there is a need for biologist-friendly integrative analysis tools that can transform data into mechanisms that relate to phenotypes. Here, we describe MetENP, an R package, and a user-friendly web application deployed at the Metabolomics Workbench site extending the metabolomics enrichment analysis to include species-specific pathway analysis, pathway enrichment scores, gene-enzyme information, and enzymatic activities of the significantly altered metabolites. MetENP provides a highly customizable workflow through various user-specified options and includes support for all metabolite species with available KEGG pathways. MetENPweb is a web application for calculating metabolite and pathway enrichment analysis.Availability and ImplementationThe MetENP package is freely available from Metabolomics Workbench GitHub: (https://github.com/metabolomicsworkbench/MetENP), the web application, is freely available at (https://www.metabolomicsworkbench.org/data/analyze.php)


2020 ◽  
Vol 33 (4) ◽  
pp. 576-579 ◽  
Author(s):  
Zhi Li ◽  
Yanchun Fan ◽  
Pingping Chang ◽  
Linlin Gao ◽  
Xiping Wang

Elsinoë ampelina is an ascomycetous fungus that causes grape anthracnose, a potentially devastating disease worldwide. Here, we report a 28.29 Mb high-quality genome sequence of E. ampelina YL-1 that encodes 8,057 predicted protein-coding genes and represents the first sequenced genome assembly of E. ampelina. This study adds to the current genomic resources for the genus Elsinoë and paves the way for research on comparative genomic studies, E. ampelina–grape interactions, and improvement of management strategies.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Dmitrii E. Polev ◽  
Iuliia K. Karnaukhova ◽  
Larisa L. Krukovskaya ◽  
Andrei P. Kozlov

Human geneLOC100505644 uncharacterized LOC100505644 [Homo sapiens](Entrez Gene ID 100505644) is abundantly expressed in tumors but weakly expressed in few normal tissues. Till now the function of this gene remains unknown. Here we identified the chromosomal borders of the transcribed region and the major splice form of theLOC100505644-specific transcript. We characterised the major regulatory motifs of the gene and its splice sites. Analysis of the secondary structure of the major transcript variant revealed a hairpin-like structure characteristic for precursor microRNAs. Comparative genomic analysis of the locus showed that it originated in primatesde novo. Taken together, our data indicate that human geneLOC100505644encodes some non-protein coding RNA, likely a microRNA. It was assigned a gene symbolELFN1-AS1(ELFN1 antisense RNA 1 (non-protein coding)). This gene combines features of evolutionary novelty and predominant expression in tumors.


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 754
Author(s):  
Yupeng Wu ◽  
Hui Fang ◽  
Jiping Wen ◽  
Juping Wang ◽  
Tianwen Cao ◽  
...  

In this study, the complete mitochondrial genomes (mitogenomes) of Hestina persimilis and Hestinalis nama (Nymphalidae: Apaturinae)were acquired. The mitogenomes of H. persimilis and H. nama are 15,252 bp and 15,208 bp in length, respectively. These two mitogenomes have the typical composition, including 37 genes and a control region. The start codons of the protein-coding genes (PCGs) in the two mitogenomes are the typical codon pattern ATN, exceptCGA in the cox1 gene. Twenty-one tRNA genes show a typical clover leaf structure, however, trnS1(AGN) lacks the dihydrouridine (DHU) stem. The secondary structures of rrnL and rrnS of two species were predicted, and there are several new stem loops near the 5’ of rrnL secondary structure. Based on comparative genomic analysis, four similar conservative structures can be found in the control regions of these two mitogenomes. The phylogenetic analyses were performed on mitogenomes of Nymphalidae. The phylogenetic trees show that the relationships among Nymphalidae are generally identical to previous studies, as follows: Libytheinae\Danainae + ((Calinaginae + Satyrinae) + Danainae\Libytheinae + ((Heliconiinae + Limenitidinae) + (Nymphalinae + (Apaturinae + Biblidinae)))). Hestinalisnama isapart fromHestina, andclosely related to Apatura, forming monophyly.


2014 ◽  
Author(s):  
Mar Gonzàlez-Porta ◽  
Alvis Brazma

In the past years, RNA sequencing has become the method of choice for the study of transcriptome composition. When working with this type of data, several tools exist to quantify differences in splicing across conditions and to address the significance of those changes. However, the number of genes predicted to undergo differential splicing is often high, and further interpretation of the results becomes a challenging task. Here we present SwitchSeq, a novel set of tools designed to help the users in the interpretation of differential splicing events that affect protein coding genes. More specifically, we provide a framework to identify switch events, i.e., cases where, for a given gene, the identity of the most abundant transcript changes across conditions. The identified events are then annotated by incorporating information from several public databases and third-party tools, and are further visualised in an intuitive manner with the independent R package tviz. All the results are displayed in a self-contained HTML document, and are also stored in txt and json format to facilitate the integration with any further downstream analysis tools. Such analysis approach can be used complementarily to Gene Ontology and pathway enrichment analysis, and can also serve as an aid in the validation of predicted changes in mRNA and protein abundance. The latest version of SwitchSeq, including installation instructions and use cases, can be found at https://github.com/mgonzalezporta/SwitchSeq. Additionally, the plot capabilities are provided as an independent R package at https://github.com/mgonzalezporta/tviz.


2020 ◽  
Author(s):  
Eiseul Kim ◽  
Seung-Min Yang ◽  
Bora Lim ◽  
Si Hong Park ◽  
Bryna Rackerby ◽  
...  

Abstract Background Lactobacillus species are used as probiotics and play an important role in fermented food production. However, use of 16S rRNA gene sequences as standard markers for the differentiation of Lactobacillus species offers a very limited scope, as several species of Lactobacillus share similar 16S rRNA gene sequences. In this study, we developed a rapid and accurate method based on comparative genomic analysis for the simultaneous identification of 37 Lactobacillus species that are commonly used in probiotics and fermented foods. Results To select species-specific sequences or genes, a total of 180 Lactobacillus genome sequences were compared using Python scripts. In 14 out of 37 species, species-specific sequences could not be found due to the similarity of the 16S–23S rRNA gene. Selected unique genes were obtained using comparative genomic analysis and all genes were confirmed to be specific for 52,478,804 genomes via in silico analysis; they were found not to be strain-specific, but to exist in all strains of the same species. Species-specific primer pairs were designed from the selected 16S–23S rRNA gene sequences or unique genes of species. The specificity of the species-specific primer pairs was confirmed using reference strains, and the accuracy and efficiency of the polymerase chain reaction (PCR) with the standard curve were confirmed. The PCR method developed in this study is able to accurately differentiate species that were not distinguishable using the 16S rRNA gene alone. This PCR assays were designed to detect and identify 37 Lactobacillus species. The developed method was then applied in the monitoring of 19 probiotics and 12 dairy products. The applied tests confirmed that the species detected in 17 products matched those indicated on their labels, whereas the remaining products contained species other than those appearing on the label. Conclusions The method developed in this study is able to rapidly and accurately distinguish different species of Lactobacillus , and can be used to monitor specific Lactobacillus species in foods such as probiotics and dairy products.


2020 ◽  
Author(s):  
Yang Wang ◽  
Chengping Hu

Abstract Background: Long non-coding RNAs (lncRNAs) have been reported to play essential roles in tumorigenesis and cancers prognosis, and they can be a potential cancer prognostic markers. However, in lung adenocarcinoma(LUAD), how lncRNA signatures predict the survival of patients is poorly understood. Our study aims to explore lncRNA signatures and prognostic function in LUAD.Methods: The expression and prognosis data of lncRNAs in LUAD patients was collected from the Cancer Genome Atlas (TCGA) data. All analyses were performed using the R package (version 3.6.2). Metascape, STRING and Cytoscape were used for enrichment analysis and function prediction of the lncRNA co-expressed protein-coding genes.Results: We have collected lncRNA expression data in 466 LUAD tumors, and a six-lncRNA signature(RP11-79H23.3, RP11-309M7.1, CTD-2357A8.3, RP11-108P20.4, U47924.29, LHFPL3-AS2) has been shown to be significantly related to LUAD patients’ overall survival. According to the lncRNA signatures, the high-risk and low-risk groups were divided in LUAD patients with different survival rates. Further multivariable cox regression analysis showed that the prognostic value of this signature was independent of clinical factors. The potential functional roles and hub co-expressed protein-coding genes in the six prognostic lncRNAs are shown in the functional enrichment analysis.Conclusions: These results showed that these six lncRNAs could be independent predicted prognostic biomarkers in LUAD patients.


Author(s):  
Natalia Zajac ◽  
Stefan Zoller ◽  
Katri Seppälä ◽  
David Moi ◽  
Christophe Dessimoz ◽  
...  

Abstract Gene duplications and novel genes have been shown to play a major role in helminth adaptation to a parasitic lifestyle because they provide the novelty necessary for adaptation to a changing environment, such as living in multiple hosts. Here we present the de novo sequenced and annotated genome of the parasitic trematode Atriophallophorus winterbourni and its comparative genomic analysis to other major parasitic trematodes. First, we reconstructed the species phylogeny, and dated the split of A. winterbourni from the Opisthorchiata suborder to approximately 237.4 MYA (± 120.4 MY). We then addressed the question of which expanded gene families and gained genes are potentially involved in adaptation to parasitism. To do this, we used Hierarchical Orthologous Groups to reconstruct three ancestral genomes on the phylogeny leading to A. winterbourni and performed a GO enrichment analysis of the gene composition of each ancestral genome, allowing us to characterize the subsequent genomic changes. Out of the 11,499 genes in the A. winterbourni genome, as much as 24% have arisen through duplication events since the speciation of A. winterbourni from the Opisthorchiata, and as much as 31.9% appear to be novel, i.e. newly acquired. We found 13 gene families in A. winterbourni to have had more than 10 genes arising through these recent duplications; all of which have functions potentially relating to host behavioural manipulation, host tissue penetration, and hiding from host immunity through antigen presentation. We identified several families with genes evolving under positive selection. Our results provide a valuable resource for future studies on the genomic basis of adaptation to parasitism and point to specific candidate genes putatively involved in antagonistic host-parasite adaptation.


Sign in / Sign up

Export Citation Format

Share Document