scholarly journals Saccharomyces cerevisiae responds to cold shock by inducing the transcription of genes required for zinc ion homeostasis

2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Kristen M Buckmelter ◽  
Bianca A Infanzon ◽  
Elizabeth M Liu ◽  
Olivia S Sakhon ◽  
Kenny R Rodriguez ◽  
...  
1997 ◽  
Vol 17 (9) ◽  
pp. 5044-5052 ◽  
Author(s):  
H Zhao ◽  
D J Eide

Zinc ion homeostasis in Saccharomyces cerevisiae is controlled primarily through the transcriptional regulation of zinc uptake systems in response to intracellular zinc levels. A high-affinity uptake system is encoded by the ZRT1 gene, and its expression is induced more than 30-fold in zinc-limited cells. A low-affinity transporter is encoded by the ZRT2 gene, and this system is also regulated by zinc. We used a genetic approach to isolate mutants whose ZRT1 expression is no longer repressed in zinc-replete cells, and a new gene, ZAP1, was identified. ZAP1 encodes a 93-kDa protein with sequence similarity to transcriptional activators; the C-terminal 174 amino acids contains five C2H2 zinc finger domains, and the N terminus (residues 1 to 706) has two potential acidic activation domains. The N-terminal region also contains 12% histidine and cysteine residues. The mutant allele isolated, ZAP1-1up, is semidominant and caused high-level expression of ZRT1 and ZRT2 in both zinc-limited and zinc-replete cells. This phenotype is the result of a mutation that substitutes a serine for a cysteine residue in the N-terminal region. A zap1 deletion mutant grew well on zinc-replete media but poorly on zinc-limiting media. This mutant had low-level ZRT1 and ZRT2 expression in zinc-limited as well as zinc-replete cells. These data indicate that Zap1p plays a central role in zinc ion homeostasis by regulating transcription of the zinc uptake system genes in response to zinc. Finally, we present evidence that Zap1p regulates transcription of its own promoter in response to zinc through a positive autoregulatory mechanism.


2001 ◽  
Vol 21 (1) ◽  
pp. 175-184 ◽  
Author(s):  
Omri Erez ◽  
Chaim Kahana

ABSTRACT Although most cells are capable of transporting polyamines, the mechanism that regulates polyamine transport in eukaryotes is still largely unknown. Using a genetic screen for clones capable of restoring spermine sensitivity to spermine-tolerant mutants ofSaccharomyces cerevisiae, we have demonstrated that Sky1p, a recently identified SR protein kinase, is a key regulator of polyamine transport. Yeast cells deleted for SKY1 developed tolerance to toxic levels of spermine, while overexpression of Sky1p in wild-type cells increased their sensitivity to spermine. Expression of the wild-type Sky1p but not of a catalytically inactive mutant restored sensitivity to spermine. SKY1 disruption results in dramatically reduced uptake of spermine, spermidine, and putrescine. In addition to spermine tolerance, sky1Δ cells exhibit increased tolerance to lithium and sodium ions but somewhat increased sensitivity to osmotic shock. The observed halotolerance suggests potential regulatory interaction between the transport of polyamines and inorganic ions, as suggested in the case of the Ptk2p, a recently described regulator of polyamine transport. We demonstrate that these two kinases act in two different signaling pathways. While deletion or overexpression of SKY1 did not significantly affect Pma1p activity, the ability of overexpressed Sky1p, Ptk1p, and Ptk2p to increase sensitivity to LiCl depends on the integrity ofPPZ1 but not of ENA1.


FEBS Journal ◽  
2012 ◽  
Vol 279 (4) ◽  
pp. 612-624 ◽  
Author(s):  
Tomokazu Ito ◽  
Kazushi Koga ◽  
Hisashi Hemmi ◽  
Tohru Yoshimura

2005 ◽  
Vol 4 (2) ◽  
pp. 281-288 ◽  
Author(s):  
Yoojin Kim ◽  
Subrata Chattopadhyay ◽  
Sarahjane Locke ◽  
David A. Pearce

ABSTRACT Btn2p, a novel cytosolic coiled-coil protein in Saccharomyces cerevisiae, was previously shown to interact with and to be necessary for the correct localization of Rhb1p, a regulator of arginine uptake, and Yif1p, a Golgi protein. We now report the biochemical and physical interactions of Btn2p with Ist2p, a plasma membrane protein that is thought to have a function in salt tolerance. A deletion in Btn2p (btn2Δ strains) results in a failure to correctly localize Ist2p, and strains lacking Btn2p and Ist2p (btn2Δ ist2Δ strains) are unable to grow in the presence of 0.5 or 1.0 M NaCl. Btn2p was originally identified as being up-regulated in a btn1Δ strain, which lacks the vacuolar-lysosomal membrane protein, Btn1p, and serves as a model for Batten disease. This up-regulation of Btn2p was shown to contribute to the maintenance of a stable vacuolar pH in the btn1Δ strain. Btn1p was subsequently shown to be required for the optimal transport of arginine into the vacuole. Interestingly, btn1Δ ist2Δ strains are also unable to grow in the presence of 0.5 or 1.0 M NaCl, and ist2Δ suppresses the vacuolar arginine transport defect in btn1Δ strains. Although further investigation is required, we speculate that altered vacuolar arginine transport in btn1Δ strains represents a mechanism for maintaining or balancing cellular ion homeostasis. Btn2p interacts with at least three proteins that are seemingly involved in different biological functions in different subcellular locations. Due to these multiple interactions, we conclude that Btn2p may play a regulatory role across the cell in response to alterations in the intracellular environment that may be caused by changes in amino acid levels or pH, a disruption in protein trafficking, or imbalances in ion homeostasis resulting from either genetic or environmental manipulation.


2011 ◽  
Vol 125 (2) ◽  
pp. 462-472 ◽  
Author(s):  
Yi-Yun Kao ◽  
Yi-Chun Chen ◽  
Tsun-Jen Cheng ◽  
Yin-Mei Chiung ◽  
Pei-Shan Liu

2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Kam Dahlquist ◽  
Nicolette Harmon ◽  
Chidinma Amakiri ◽  
Katrina Sherbina ◽  
Nicholas Rohacz ◽  
...  

2001 ◽  
Vol 183 (9) ◽  
pp. 2881-2887 ◽  
Author(s):  
Natalia Abramova ◽  
Odeniel Sertil ◽  
Sapna Mehta ◽  
Charles V. Lowry

ABSTRACT The DAN/TIR genes encode nine cell wall mannoproteins in Saccharomyces cerevisiae which are expressed during anaerobiosis (DAN1,DAN2, DAN3, DAN4,TIR1, TIR2, TIR3,TIR4, and TIP1). Most are expressed within an hour of an anaerobic shift, but DAN2 andDAN3 are expressed after about 3 h. At the same time, CWP1 and CWP2, the genes encoding the major mannoproteins, are down-regulated, suggesting that there is a programmed remodeling of the cell wall in which Cwp1 and Cwp2 are replaced by nine anaerobic counterparts. TIP1,TIR1, TIR2, and TIR4 are also induced during cold shock. Correspondingly, CWP1 is down-regulated during cold shock. As reported elsewhere, Mox4 is a heme-inhibited activator, and Mot3 is a heme-induced repressor of theDAN/TIR genes (but not of TIP1). We show that CWP2 (but not CWP1) is controlled by the same factors, but in reverse fashion—primarily by Mot3 (which can function as either an activator or repressor) but also by Mox4, accounting for the reciprocal regulation of the two groups of genes. Disruptions of TIR1, TIR3, orTIR4 prevent anaerobic growth, indicating that each protein is essential for anaerobic adaptation. The Dan/Tir and Cwp proteins are homologous, with the greatest similarities shown within three subgroups: the Dan proteins, the Tip and Tir proteins, and, more distantly, the Cwp proteins. The clustering of homology corresponds to differences in expression: the Tip and Tir proteins are expressed during hypoxia and cold shock, the Dan proteins are more stringently repressed by oxygen and insensitive to cold shock, and the Cwp proteins are oppositely regulated by oxygen and temperature.


Sign in / Sign up

Export Citation Format

Share Document