Genetic Differences Affecting the Potency of Stereoisomers of Isoflurane

1996 ◽  
Vol 85 (2) ◽  
pp. 385-392 ◽  
Author(s):  
Phil G. Morgan ◽  
Marianne F. Usiak ◽  
Margaret M. Sedensky

Background In previous studies, researchers demonstrated the ability of a variety of organisms and in vitro sites of anesthetic action to distinguish between stereoisomers of isoflurane or halothane. However, it was not shown whether organisms with differing sensitivities to stereoisomers of one volatile anesthetic are able to distinguish between stereoisomers of another. In this study, the responses of mutants of Caenorbabditis elegans to stereoisomers of isoflurane were determined for comparison to previous results in halothane. Methods Mutant strains of C. elegans were isolated and grown by standard techniques. The EC50s (the effective concentrations of anesthetia at which 50% of the animals are immobilized for 10 s) of stereoisomers of isoflurane and the racemate were determined in wild type and mutant strains of C. elegans. Results Wild type C. elegans and strains with high EC50S of the racemate were more sensitive to the (+) isomer of isoflurane by approximately 30%. The racemate showed a EC50s similar to the less potent isomer, the (-) form. In the strains with low EC50s, one strain showed no ability to differentiate between the stereoisomers, whereas two showed a 60% difference between the (+) and (-) forms. Conclusions The ability to distinguish between stereoisomers of isoflurane is associated with genetic loci separate from those that distinguish between stereoisomers of halothane. These results are consistent with multiple sites of action for these anesthetics.

Genetics ◽  
2002 ◽  
Vol 161 (1) ◽  
pp. 109-119 ◽  
Author(s):  
Bruno van Swinderen ◽  
Laura B Metz ◽  
Laynie D Shebester ◽  
C Michael Crowder

AbstractVolatile anesthetics (VAs) disrupt nervous system function by an ill-defined mechanism with no known specific antagonists. During the course of characterizing the response of the nematode C. elegans to VAs, we discovered that a C. elegans pheromone antagonizes the VA halothane. Acute exposure to pheromone rendered wild-type C. elegans resistant to clinical concentrations of halothane, increasing the EC50 from 0.43 ± 0.03 to 0.90 ± 0.02. C. elegans mutants that disrupt the function of sensory neurons required for the action of the previously characterized dauer pheromone blocked pheromone-induced resistance (Pir) to halothane. Pheromone preparations from loss-of-function mutants of daf-22, a gene required for dauer pheromone production, lacked the halothane-resistance activity, suggesting that dauer and Pir pheromone are identical. However, the pathways for pheromone’s effects on dauer formation and VA action were not identical. Not all mutations that alter dauer formation affected the Pir phenotype. Further, mutations in genes not known to be involved in dauer formation completely blocked Pir, including those altering signaling through the G proteins Goα and Gqα. A model in which sensory neurons transduce the pheromone activity through antagonistic Go and Gq pathways, modulating VA action against neurotransmitter release machinery, is proposed.


Genetics ◽  
2001 ◽  
Vol 158 (2) ◽  
pp. 643-655 ◽  
Author(s):  
Bruno van Swinderen ◽  
Laura B Metz ◽  
Laynie D Shebester ◽  
Jane E Mendel ◽  
Paul W Sternberg ◽  
...  

Abstract To identify genes controlling volatile anesthetic (VA) action, we have screened through existing Caenorhabditis elegans mutants and found that strains with a reduction in Go signaling are VA resistant. Loss-of-function mutants of the gene goa-1, which codes for the α-subunit of Go, have EC50s for the VA isoflurane of 1.7- to 2.4-fold that of wild type. Strains overexpressing egl-10, which codes for an RGS protein negatively regulating goa-1, are also isoflurane resistant. However, sensitivity to halothane, a structurally distinct VA, is differentially affected by Go pathway mutants. The RGS overexpressing strains, a goa-1 missense mutant found to carry a novel mutation near the GTP-binding domain, and eat-16(rf) mutants, which suppress goa-1(gf) mutations, are all halothane resistant; goa-1(null) mutants have wild-type sensitivities. Double mutant strains carrying mutations in both goa-1 and unc-64, which codes for a neuronal syntaxin previously found to regulate VA sensitivity, show that the syntaxin mutant phenotypes depend in part on goa-1 expression. Pharmacological assays using the cholinesterase inhibitor aldicarb suggest that VAs and GOA-1 similarly downregulate cholinergic neurotransmitter release in C. elegans. Thus, the mechanism of action of VAs in C. elegans is regulated by Goα, and presynaptic Goα-effectors are candidate VA molecular targets.


Author(s):  
Kitlangki Suchiang ◽  
Nitasha H Kayde

Background: Phlogacanthus thyrsiflorus Nees (P. thyrsiflorus) of Acanthaceae family is endogenous to sub-tropical Himalayas. It has been reported to be used traditionally in Jaintia tribe of Meghalaya, India for treatment of many ailments.Objectives: The aim was to detect the active compounds present in the leaves for evaluation of in vitro free radicals scavenging potentials. Leaves protective actions in vivo will be investigated using Caenorhabditis elegans (C. elegans) model system utilizing wild type and mutant strains and the phenomena of host-pathogens interactions.Materials and methods: Gas chromatography/ Mass spectrometry (GC/MS) was used for detection of different compounds present. The versatility of leaf extracts to scavenge different free radicals generated in vitro was assessed with different in vitro methods. Survival analysis of wild type and mutant strains C. elegans under enhanced pro-oxidants exposure was investigated in vivo. Fast killing assay was also performed to study the extracts modulatory activity on host C. elegans survival under pathogen Pseudomonas aeruginosa infection.Results:  Forty compounds were detected in methanolic fraction of the extract with variable percentages. Both aqueous and methanol extract possessed remarkable, versatile free radical scavenging activity irrespective of the types of free radical generated. The in vivo experiments are in compliance, with observable increased survival ability percentage of C. elegans under intense exogenous oxidative stress and pathogen infection.Conclusion: Our findings enlightened the different compounds present with versatility of P. thyrsiflorus in tackling different free radicals generated both in vitro and in vivo that highly support for its candidature as a good antioxidant source. Our findings may justify the historical relevance of this plant in herbal remedies that could form the basis for inquiry of new active principles.Keywords: Free radicals, Oxidative stress, Caenorhabditis elegans, Phlogacanthus thyrsiflorus, Phytochemicals


2021 ◽  
Vol 14 ◽  
pp. 117863882110294
Author(s):  
Mihiri Munasinghe ◽  
Abdullah Almotayri ◽  
Jency Thomas ◽  
Deniz Heydarian ◽  
Markandeya Jois

Background: We previously showed that cocoa, a rich source of polyphenols improved the age-associated health and extended the lifespan in C. elegans when supplemented starting from L1 stage. Aim: In this study, we aimed to find out the effects of timing of cocoa exposure on longevity improving effects and the mechanisms and pathways involved in lifespan extension in C. elegans. Methods: The standard E. coli OP50 diet of wild type C. elegans was supplemented with cocoa powder starting from different larval stages (L1, L2, L3, and L4) till the death, from L1 to adult day 1 and from adult day 1 till the death. For mechanistic studies, different mutant strains of C. elegans were supplemented with cocoa starting from L1 stage till the death. Survival curves were plotted, and mean lifespan was reported. Results: Cocoa exposure starting from L1 stage till the death and till adult day 1 significantly extended the lifespan of worms. However, cocoa supplementation at other larval stages as well as at adulthood could not extend the lifespan, instead the lifespan was significantly reduced. Cocoa could not extend the lifespan of daf-16, daf-2, sir-2.1, and clk-1 mutants. Conclusion: Early-start supplementation is essential for cocoa-mediated lifespan extension which is dependent on insulin/IGF-1 signaling pathway and mitochondrial respiration.


2021 ◽  
pp. 1-17
Author(s):  
Mani Iyer Prasanth ◽  
James Michael Brimson ◽  
Dicson Sheeja Malar ◽  
Anchalee Prasansuklab ◽  
Tewin Tencomnao

BACKGROUND: Streblus asper Lour., has been reported to have anti-aging and neuroprotective efficacies in vitro. OBJECTIVE: To analyze the anti-aging, anti-photoaging and neuroprotective efficacies of S. asper in Caenorhabditis elegans. METHODS: C. elegans (wild type and gene specific mutants) were treated with S. asper extract and analyzed for lifespan and other health benefits through physiological assays, fluorescence microscopy, qPCR and Western blot. RESULTS: The plant extract was found to increase the lifespan, reduce the accumulation of lipofuscin and modulate the expression of candidate genes. It could extend the lifespan of both daf-16 and daf-2 mutants whereas the pmk-1 mutant showed no effect. The activation of skn-1 was observed in skn-1::GFP transgenic strain and in qPCR expression. Further, the extract can extend the lifespan of UV-A exposed nematodes along with reducing ROS levels. Additionally, the extract also extends lifespan and reduces paralysis in Aβ transgenic strain, apart from reducing Aβ expression. CONCLUSIONS: S. asper was able to extend the lifespan and healthspan of C. elegans which was independent of DAF-16 pathway but dependent on SKN-1 and MAPK which could play a vital role in eliciting the anti-aging, anti-photoaging and neuroprotective effects, as the extract could impart oxidative stress resistance and neuroprotection.


Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 563-574
Author(s):  
Laura K Palmer ◽  
Darren Wolfe ◽  
Jessica L Keeley ◽  
Ralph L Keil

Abstract Volatile anesthetics affect all cells and tissues tested, but their mechanisms and sites of action remain unknown. To gain insight into the cellular activities of anesthetics, we have isolated genes that, when overexpressed, render Saccharomyces cerevisiae resistant to the volatile anesthetic isoflurane. One of these genes, WAK3/TAT1, encodes a permease that transports amino acids including leucine and tryptophan, for which our wild-type strain is auxotrophic. This suggests that availability of amino acids may play a key role in anesthetic response. Multiple lines of evidence support this proposal: (i) Deletion or overexpression of permeases that transport leucine and/or tryptophan alters anesthetic response; (ii) prototrophic strains are anesthetic resistant; (iii) altered concentrations of leucine and tryptophan in the medium affect anesthetic response; and (iv) uptake of leucine and tryptophan is inhibited during anesthetic exposure. Not all amino acids are critical for this response since we find that overexpression of the lysine permease does not affect anesthetic sensitivity. These findings are consistent with models in which anesthetics have a physiologically important effect on availability of specific amino acids by altering function of their permeases. In addition, we show that there is a relationship between nutrient availability and ubiquitin metabolism in this response.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sabrina Dietz ◽  
Miguel Vasconcelos Almeida ◽  
Emily Nischwitz ◽  
Jan Schreier ◽  
Nikenza Viceconte ◽  
...  

AbstractTelomeres are bound by dedicated proteins, which protect them from DNA damage and regulate telomere length homeostasis. In the nematode Caenorhabditis elegans, a comprehensive understanding of the proteins interacting with the telomere sequence is lacking. Here, we harnessed a quantitative proteomics approach to identify TEBP-1 and TEBP-2, two paralogs expressed in the germline and embryogenesis that associate to telomeres in vitro and in vivo. tebp-1 and tebp-2 mutants display strikingly distinct phenotypes: tebp-1 mutants have longer telomeres than wild-type animals, while tebp-2 mutants display shorter telomeres and a Mortal Germline. Notably, tebp-1;tebp-2 double mutant animals have synthetic sterility, with germlines showing signs of severe mitotic and meiotic arrest. Furthermore, we show that POT-1 forms a telomeric complex with TEBP-1 and TEBP-2, which bridges TEBP-1/-2 with POT-2/MRT-1. These results provide insights into the composition and organization of a telomeric protein complex in C. elegans.


2020 ◽  
Author(s):  
Sabrina Dietz ◽  
Miguel Vasconcelos Almeida ◽  
Emily Nischwitz ◽  
Jan Schreier ◽  
Nikenza Viceconte ◽  
...  

AbstractTelomeres are bound by dedicated protein complexes, like shelterin in mammals, which protect telomeres from DNA damage. In the nematode Caenorhabditis elegans, a comprehensive understanding of the proteins interacting with the telomere sequence is lacking. Here, we harnessed a quantitative proteomics approach to screen for proteins binding to C. elegans telomeres, and identified TEBP-1 and TEBP-2, two paralogs that associate to telomeres in vitro and in vivo. TEBP-1 and TEBP-2 are expressed in the germline and during embryogenesis. tebp-1 and tebp-2 mutants display strikingly distinct phenotypes: tebp-1 mutants have longer telomeres than wild-type animals, while tebp-2 mutants display shorter telomeres and a mortal germline, a phenotype characterized by transgenerational germline deterioration. Notably, tebp-1; tebp-2 double mutant animals have synthetic sterility, with germlines showing signs of severe mitotic and meiotic arrest. TEBP-1 and TEBP-2 form a telomeric complex with the known single-stranded telomere-binding proteins POT-1, POT-2, and MRT-1. Furthermore, we find that POT-1 bridges the double- stranded binders TEBP-1 and TEBP-2, with the single-stranded binders POT-2 and MRT-1. These results describe the first telomere-binding complex in C. elegans, with TEBP-1 and TEBP-2, two double-stranded telomere binders required for fertility and that mediate opposite telomere dynamics.


1991 ◽  
Vol 98 (4) ◽  
pp. 491-496
Author(s):  
R. Nave ◽  
D. Furst ◽  
U. Vinkemeier ◽  
K. Weber

We have isolated mini-titin from the nematodes Ascaris lumbricoides and Caenorhabditis elegans under native conditions using a modification in the procedure to prepare this protein from insect muscle. The proteins have an apparent molecular weight of 600,000 and appear in oriented specimens as flexible thin rods with a length around 240–250 nm. The circular dichroism spectrum of the Ascaris protein is dominated by beta-structure. The proteins react with antibodies to insect mini-titin and also with antibodies raised against peptides contained in the sequence predicted for twitchin, the product of the Caenorhabditis elegans unc-22 gene. Antibodies to insect mini-titin decorate the body musculature as well as the pharynx of wild-type C. elegans in immunofluorescence microscopy. In the twitchin mutant E66 only the pharynx is decorated. We conclude that the mini-titins of invertebrate muscles defined earlier by ultrastructural criteria are very likely to be twitchins, i.e. molecules necessary for normal muscle contraction. We discuss the molecular properties of the proteins in the light of the sequence established for twitchin.


2003 ◽  
Vol 99 (4) ◽  
pp. 867-875 ◽  
Author(s):  
Sumiko Gamo ◽  
Junya Tomida ◽  
Katsuyuki Dodo ◽  
Dai Keyakidani ◽  
Hitoshi Matakatsu ◽  
...  

Background Various species, e.g., Caenorhabditis elegans, Drosophila melanogaster, and mice, have been used to explore the mechanisms of action of general anesthetics in vivo. The authors isolated a Drosophila mutant, ethas311, that was hypersensitive to diethylether and characterized the calreticulin (crc) gene as a candidate of altered anesthetic sensitivity. Methods Molecular analysis of crc included cloning and sequencing of the cDNA, Northern blotting, and in situ hybridization to accomplish the function of the gene and its mutation. For anesthetic phenotype assay, the 50% anesthetizing concentrations were determined for ethas311, revertants, and double-mutant strains (wild-type crc transgene plus ethas311). Results Expression of the crc 1.4-kb transcript was lower in the mutant ethas311 than in the wild type at all developmental stages. The highest expression at 19 h after pupation was observed in the brain of the wild type but was still low in the mutant at that stage. The mutant showed resistance to isoflurane as well as hypersensitivity to diethylether, whereas it showed the wild phenotype to halothane. Both mutant phenotypes were restored to the wild type in the revertants and double-mutant strains. Conclusion ethas311 is a mutation of low expression of the Drosophila calreticulin gene. The authors demonstrated that hypersensitivity to diethylether and resistance to isoflurane are associated with low expression of the gene. In Drosophila, calreticulin seems to mediate these anesthetic sensitivities, and it is a possible target for diethylether and isoflurane, although the predicted anesthetic targets based on many studies in vitro and in vivo are the membrane proteins, such as ion channels and receptors.


Sign in / Sign up

Export Citation Format

Share Document