scholarly journals Early Exposure is Necessary for the Lifespan Extension Effects of Cocoa in C. elegans

2021 ◽  
Vol 14 ◽  
pp. 117863882110294
Author(s):  
Mihiri Munasinghe ◽  
Abdullah Almotayri ◽  
Jency Thomas ◽  
Deniz Heydarian ◽  
Markandeya Jois

Background: We previously showed that cocoa, a rich source of polyphenols improved the age-associated health and extended the lifespan in C. elegans when supplemented starting from L1 stage. Aim: In this study, we aimed to find out the effects of timing of cocoa exposure on longevity improving effects and the mechanisms and pathways involved in lifespan extension in C. elegans. Methods: The standard E. coli OP50 diet of wild type C. elegans was supplemented with cocoa powder starting from different larval stages (L1, L2, L3, and L4) till the death, from L1 to adult day 1 and from adult day 1 till the death. For mechanistic studies, different mutant strains of C. elegans were supplemented with cocoa starting from L1 stage till the death. Survival curves were plotted, and mean lifespan was reported. Results: Cocoa exposure starting from L1 stage till the death and till adult day 1 significantly extended the lifespan of worms. However, cocoa supplementation at other larval stages as well as at adulthood could not extend the lifespan, instead the lifespan was significantly reduced. Cocoa could not extend the lifespan of daf-16, daf-2, sir-2.1, and clk-1 mutants. Conclusion: Early-start supplementation is essential for cocoa-mediated lifespan extension which is dependent on insulin/IGF-1 signaling pathway and mitochondrial respiration.

2021 ◽  
Vol 13 ◽  
Author(s):  
Abdullah Almotayri ◽  
Jency Thomas ◽  
Mihiri Munasinghe ◽  
Markandeya Jois

Background: The antidepressant mianserin has been shown to extend the lifespan of Caenorhabditis elegans (C. elegans), a well-established model organism used in aging research. The extension of lifespan in C. elegans was shown to be dependent on increased expression of the scaffolding protein (ANK3/unc-44). In contrast, antidepressant use in humans is associated with an increased risk of death. The C. elegans in the laboratory are fed Escherichia coli (E. coli), a diet high in protein and low in carbohydrate, whereas a typical human diet is high in carbohydrates. We hypothesized that dietary carbohydrates might mitigate the lifespan-extension effect of mianserin. Objective: To investigate the effect of glucose added to the diet of C. elegans on the lifespan-extension effect of mianserin. Methods: Wild-type Bristol N2 and ANK3/unc-44 inactivating mutants were cultured on agar plates containing nematode growth medium and fed E. coli. Treatment groups included (C) control, (M50) 50 μM mianserin, (G) 73 mM glucose, and (M50G) 50 μM mianserin and 73 mM glucose. Lifespan was determined by monitoring the worms until they died. Statistical analysis was performed using the Kaplan-Meier version of the log-rank test. Results: Mianserin treatment resulted in a 12% increase in lifespan (P<0.05) of wild-type Bristol N2 worms but reduced lifespan by 6% in ANK3/unc-44 mutants, consistent with previous research. The addition of glucose to the diet reduced the lifespan of both strains of worms and abolished the lifespan-extension by mianserin. Conclusion: The addition of glucose to the diet of C. elegans abolishes the lifespan-extension effects of mianserin.


1996 ◽  
Vol 85 (2) ◽  
pp. 385-392 ◽  
Author(s):  
Phil G. Morgan ◽  
Marianne F. Usiak ◽  
Margaret M. Sedensky

Background In previous studies, researchers demonstrated the ability of a variety of organisms and in vitro sites of anesthetic action to distinguish between stereoisomers of isoflurane or halothane. However, it was not shown whether organisms with differing sensitivities to stereoisomers of one volatile anesthetic are able to distinguish between stereoisomers of another. In this study, the responses of mutants of Caenorbabditis elegans to stereoisomers of isoflurane were determined for comparison to previous results in halothane. Methods Mutant strains of C. elegans were isolated and grown by standard techniques. The EC50s (the effective concentrations of anesthetia at which 50% of the animals are immobilized for 10 s) of stereoisomers of isoflurane and the racemate were determined in wild type and mutant strains of C. elegans. Results Wild type C. elegans and strains with high EC50S of the racemate were more sensitive to the (+) isomer of isoflurane by approximately 30%. The racemate showed a EC50s similar to the less potent isomer, the (-) form. In the strains with low EC50s, one strain showed no ability to differentiate between the stereoisomers, whereas two showed a 60% difference between the (+) and (-) forms. Conclusions The ability to distinguish between stereoisomers of isoflurane is associated with genetic loci separate from those that distinguish between stereoisomers of halothane. These results are consistent with multiple sites of action for these anesthetics.


1991 ◽  
Vol 98 (4) ◽  
pp. 491-496
Author(s):  
R. Nave ◽  
D. Furst ◽  
U. Vinkemeier ◽  
K. Weber

We have isolated mini-titin from the nematodes Ascaris lumbricoides and Caenorhabditis elegans under native conditions using a modification in the procedure to prepare this protein from insect muscle. The proteins have an apparent molecular weight of 600,000 and appear in oriented specimens as flexible thin rods with a length around 240–250 nm. The circular dichroism spectrum of the Ascaris protein is dominated by beta-structure. The proteins react with antibodies to insect mini-titin and also with antibodies raised against peptides contained in the sequence predicted for twitchin, the product of the Caenorhabditis elegans unc-22 gene. Antibodies to insect mini-titin decorate the body musculature as well as the pharynx of wild-type C. elegans in immunofluorescence microscopy. In the twitchin mutant E66 only the pharynx is decorated. We conclude that the mini-titins of invertebrate muscles defined earlier by ultrastructural criteria are very likely to be twitchins, i.e. molecules necessary for normal muscle contraction. We discuss the molecular properties of the proteins in the light of the sequence established for twitchin.


2002 ◽  
Vol 184 (10) ◽  
pp. 2850-2853 ◽  
Author(s):  
Annie Conter ◽  
Rachel Sturny ◽  
Claude Gutierrez ◽  
Kaymeuang Cam

ABSTRACT The RcsCB His-Asp phosphorelay system regulates the expression of several genes of Escherichia coli, but the molecular nature of the inducing signal is still unknown. We show here that treatment of an exponentially growing culture of E. coli with the cationic amphipathic compound chlorpromazine (CPZ) stimulates expression of a set of genes positively regulated by the RcsCB system. This induction is abolished in rcsB or rcsC mutant strains. In addition, treatment with CPZ inhibits growth. The wild-type strain is able to recover from this inhibition and resume growth after a period of adaptation. In contrast, strains deficient in the RcsCB His-Asp phosphorelay system are hypersensitive to CPZ. These results suggest that cells must express specific RcsCB-regulated genes in order to cope with the CPZ-induced stress. This is the first report of the essential role of the RcsCB system in a stress situation. These results also strengthen the notion that alterations of the cell envelope induce a signal recognized by the RcsC sensor.


1979 ◽  
Vol 179 (1) ◽  
pp. 99-107 ◽  
Author(s):  
Jeffrey D. Hillman

NAD+-specific glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12) from Escherichia coli was purified to homogeneity by a relatively simple procedure involving affinity chromatography on agarose–hexane–NAD+ and repeated crystallization. Rabbit antiserum directed against this protein produced one precipitin line in double-diffusion studies against the pure enzyme, and two lines against crude extracts of wild-type E. coli strains. Both precipitin lines represent the interaction of antibody with determinants specific for glyceraldehyde 3-phosphate dehydrogenase. Nine independent mutants of E. coli lacking glyceraldehyde 3-phosphate dehydrogenase activity all possessed some antigenic cross-reacting material to the wild-type enzyme. The mutants could be divided into three groups on the basis of the types and amounts of precipitin lines observed in double-diffusion experiments; one group formed little cross-reacting material. The cross-reacting material in crude cell-free extracts of several of the mutant strains were also tested for alterations in their affinity for NAD+ and their phosphorylative activity. The cumulative data indicate that the protein in several of the mutant strains is severely altered, and thus that glyceraldehyde 3-phosphate dehydrogenase is unlikely to have an essential, non-catalytic function such as buffering nicotinamide nucleotide or glycolytic-intermediate concentrations. Others of the mutants tested have cross-reacting material which behaved like the wild-type enzyme for the several parameters studied; the proteins from these strains, once purified, might serve as useful analogues of the wild-type enzyme.


2013 ◽  
Vol 79 (10) ◽  
pp. 3171-3175 ◽  
Author(s):  
Joanne Theisen ◽  
Gerben J. Zylstra ◽  
Nathan Yee

ABSTRACTThe genetic identity and cofactor composition of the bacterial tellurate reductase are currently unknown. In this study, we examined the requirement of molybdopterin biosynthesis and molybdate transporter genes for tellurate reduction inEscherichia coliK-12. The results show that mutants deleted of themoaA,moaB,moaE, ormoggene in the molybdopterin biosynthesis pathway lost the ability to reduce tellurate. Deletion of themodBormodCgene in the molybdate transport pathway also resulted in complete loss of tellurate reduction activity. Genetic complementation by the wild-type sequences restored tellurate reduction activity in the mutant strains. These findings provide genetic evidence that tellurate reduction inE. coliinvolves a molybdoenzyme.


1991 ◽  
Vol 115 (5) ◽  
pp. 1237-1247 ◽  
Author(s):  
R M Hemmer ◽  
S G Donkin ◽  
K J Chin ◽  
D G Grenache ◽  
H Bhatt ◽  
...  

Mouse mAb M38 was used in indirect immunofluorescence experiments to detect a stage-specific antigen on the surface of the first larval stage (L1) of the free-living nematode Caenorhabditis elegans, and to detect alterations in the apparent expression of this antigen in two distinct classes of C. elegans mutants. In previously described srf-2 and srf-3 mutants (Politz S. M., M. T. Philipp, M. Estevez, P.J. O'Brien, and K. J. Chin. 1990. Proc. Natl. Acad. Sci. USA. 87:2901-2905), the antigen is not detected on the surface of any stage. Conversely, in srf-(yj43) and other similar mutants, the antigen is expressed on the surface of the first through the fourth (L4) larval stages. To understand the molecular basis of these alterations, the antigen was characterized in gel immunoblotting experiments. After SDS-PAGE separation and transfer to nitrocellulose, M38 detected a protein antigen in extracts of wild-type L1 populations. The antigen was sensitive to digestion by Pronase and O-glycanase (endo-alpha-N-acetylgalactosaminidase), suggesting that it is an O-linked glycoprotein. This antigen was not detected in corresponding extracts of wild-type L4s or srf-2 or srf-3 L1s, but was detected in extracts of srf-(yj43) L4s. The antigen-defective phenotype of srf-3 was epistatic to the heterochronic mutant phenotype of srf-(yj43) in immunofluorescence tests of the srf-3 srf-(yj43) double mutant, suggesting that srf-(yj43) causes incorrect regulation of a pathway of antigen formation that requires wild-type srf-3 activity.


2006 ◽  
Vol 290 (1) ◽  
pp. G30-G35 ◽  
Author(s):  
Alip Borthakur ◽  
Ravinder K. Gill ◽  
Kim Hodges ◽  
Krishnamurthy Ramaswamy ◽  
Gail Hecht ◽  
...  

Enteropathogenic Escherichia coli (EPEC), a food-borne human pathogen, is responsible for infantile diarrhea, especially in developing countries. The pathophysiology of EPEC-induced diarrhea, however, is not completely understood. Our recent studies showed modulation of Na+/H+and Cl−/HCO3−exchange activities in Caco-2 cells in response to EPEC infection. We hypothesized that intestinal short-chain fatty acid absorption mediated by monocarboxylate transporter 1 (MCT1) might also be altered by EPEC infection. The aim of the current studies was to examine the effect of EPEC infection on butyrate uptake. Caco-2 cells were infected with wild-type EPEC, various mutant strains, or nonpathogenic E. coli HS4, and [14C]butyrate uptake was determined. EPEC, but not nonpathogenic E. coli, significantly decreased butyrate uptake. Infection of cells with strains harboring mutations in escN, which encodes a putative ATPase for the EPEC type III secretion system (TTSS), or in the espA, espB, or espD genes encoding structural components of the TTSS, had no effect on butyrate uptake, indicating the TTSS dependence. On the other hand, strains with mutations in the effector protein genes espF, espG, espH, and map inhibited butyrate uptake, similar to the wild-type EPEC. Surface expression of MCT1 decreased considerably after EPEC but not after nonpathogenic E. coli infection. In conclusion, our studies demonstrate inhibition of MCT1-mediated butyrate uptake in Caco-2 cells in response to EPEC infection. This inhibition was dependent on a functional TTSS and the structural proteins EspA, -B, and -D of the translocation apparatus.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Koumei Yazaki ◽  
Chinatsu Yoshikoshi ◽  
Satoru Oshiro ◽  
Sumino Yanase

Astaxanthin (AX), which is produced by some marine animals, is a type of carotenoid that has antioxidative properties. In this study, we initially examined the effects of AX on the aging of a model organismC. elegansthat has the conserved intracellular pathways related to mammalian longevity. The continuous treatments with AX (0.1 to 1 mM) from both the prereproductive and young adult stages extended the mean lifespans by about 16–30% in the wild-type and long-lived mutantage-1ofC. elegans. In contrast, the AX-dependent lifespan extension was not observed even in adaf-16null mutant. Especially, the expression of genes encoding superoxide dismutases and catalases increased in two weeks after hatching, and the DAF-16 protein was translocated to the nucleus in the AX-exposed wild type. These results suggest that AX protects the cell organelle mitochondria and nucleus of the nematode, resulting in a lifespan extension via an Ins/IGF-1 signaling pathway during normal aging, at least in part.


2007 ◽  
Vol 73 (6) ◽  
pp. 1914-1920 ◽  
Author(s):  
N. Yee ◽  
J. Ma ◽  
A. Dalia ◽  
T. Boonfueng ◽  
D. Y. Kobayashi

ABSTRACT The fate of selenium in the environment is controlled, in part, by microbial selenium oxyanion reduction and Se(0) precipitation. In this study, we identified a genetic regulator that controls selenate reductase activity in the Se-reducing bacterium Enterobacter cloacae SLD1a-1. Heterologous expression of the global anaerobic regulatory gene fnr (fumarate nitrate reduction regulator) from E. cloacae in the non-Se-reducing strain Escherichia coli S17-1 activated the ability to reduce Se(VI) and precipitate insoluble Se(0) particles. Se(VI) reduction by E. coli S17-1 containing the fnr gene occurred at rates similar to those for E. cloacae, with first-order reaction constants of k = 2.07 × 10−2 h−1 and k = 3.36 × 10−2 h−1, respectively, and produced elemental selenium particles with identical morphologies and short-range atomic orders. Mutation of the fnr gene in E. cloacae SLD1a-1 resulted in derivative strains that were deficient in selenate reductase activity and unable to precipitate elemental selenium. Complementation by the wild-type fnr sequence restored the ability of mutant strains to reduce Se(VI). Our findings suggest that Se(VI) reduction and the precipitation of Se(0) by facultative anaerobes are regulated by oxygen-sensing transcription factors and occur under suboxic conditions.


Sign in / Sign up

Export Citation Format

Share Document