An in vitro evaluation of an instrument designed to measure oxygen consumption and carbon dioxide production during mechanical ventilation

1994 ◽  
Vol 22 (12) ◽  
pp. 1995-2000
Author(s):  
Charles Weissman ◽  
Ajoy Sardar ◽  
Marcia Kemper
1987 ◽  
Vol 21 (1) ◽  
pp. 58-65 ◽  
Author(s):  
Keith H Marks ◽  
Patricia Coen ◽  
James R Kerrigan ◽  
Nick A Francalancia ◽  
Elizabeth E Nardis ◽  
...  

1992 ◽  
Vol 70 (3) ◽  
pp. 408-411 ◽  
Author(s):  
Peter B. Frappell ◽  
Andrea Dotta ◽  
Jacopo P. Mortola

Aerobic metabolism (oxygen consumption, [Formula: see text], and carbon dioxide production, [Formula: see text]) has been measured in newborn rats at 2 days of age during normoxia, 30 min of hyperoxia (100% O2) and an additional 30 min of recovery in normoxia at ambient temperatures of 35 °C (thermoneutrality) or 30 °C. In normoxia, at 30 °C [Formula: see text] was higher than at 35 °C. With hyperoxia, [Formula: see text] increased in all cases, but more so at 30 °C (+20%) than at 35 °C (+9%). Upon return to normoxia, metabolism readily returned to the prehyperoxic value. The results support the concept that the normoxic metabolic rate of the newborn can be limited by the availability of oxygen. At temperatures below thermoneutrality the higher metabolic needs aggravate the limitation in oxygen availability, and the positive effects of hyperoxia on [Formula: see text] are therefore more apparent.Key words: neonatal respiration, oxygen consumption, thermoregulation.


PEDIATRICS ◽  
1964 ◽  
Vol 33 (1) ◽  
pp. 75-82
Author(s):  
Forrest H. Adams ◽  
Tetsuro Fujiwara ◽  
Robert Spears ◽  
Joan Hodgman

Thirty-four measurements of oxygen consumption, carbon dioxide production, respiratory quotient, and rectal temperature were made on 22 premature infants with ages ranging from 2½ hours to 18 days. The studies were conducted at 32-34°C utilizing an open circuit apparatus and a specially designed climatized chamber. Oxygen consumption and carbon dioxide production were lowest in the first 12 hours and increased thereafter. The rate of increase in O2 consumption was greater than that of CO2 production, with a consequent fall in respiratory quotient during the first 76 hours of life. A reverse relation of O2 consumption and CO2 production was found following the 4th day of life with a consequent rise in respiratory quotient. There was a close correlation between O2 consumption and rectal temperature regardless of age. A respiratory quotient below the value of 0.707 for fat metabolism was observed in 7 premature infants with ages ranging from 24 to 76 hours.


1958 ◽  
Vol 193 (3) ◽  
pp. 495-498 ◽  
Author(s):  
Ruth McClintock ◽  
Nathan Lifson

Measurements of oxygen consumption and carbon dioxide production were made by the Haldane open circuit method on hereditarily obese mice and littermate controls, and the energy expenditures were estimated. Studies were made on mice for short periods under ‘basal’ conditions, and for periods of approximately a day with the mice fasted and confined, fasted and relatively unconfined, and fed and unconfined. The total energy expenditures of fed and unconfined obese mice were found to be higher than those of nonobese littermate controls by virtue of a) increased ‘basal metabolism’, b) greater energy expenditure associated with feeding, and possibly c) larger energy output for activity despite reduced voluntary movement. The values obtained for total metabolism confirm those previously determined by an isotope method for measuring CO2 output.


1931 ◽  
Vol 8 (3) ◽  
pp. 319-329
Author(s):  
JOSEPH NEEDHAM ◽  
MARJORY STEPHENSON ◽  
DOROTHY MOYLE NEEDHAM

1. The vitelline membrane of the infertile hen's egg exhibits no dehydrase activity. 2. The vitelline membrane has no measurable aerobic respiration in vitro, nor has the yolk of the infertile egg. This confirms the view that the carbon dioxide production of the intact egg is not the result of any true respiration. 3. When incubated anaerobically in vitro, bacteriologically sterile yolk produces consistently small amounts of lactic acid. 4. This glycolysis is not the result of any catalytic activity of the vitelline membrane, but takes place throughout the substance of the yolk. 5. Under similar conditions, bacteriologically sterile yolk produces small amounts of a substance or substances estimatable as ethyl alcohol. 6. If the yolk suspension is bacterially contaminated, however, lactic acid and alcohol are produced in amounts closely similar to those found by earlier workers on this subject. 7. The heat of glycolysis, under anaerobic conditions, calculated from the amounts of lactic acid experimentally found to be formed, is of the same order as (a) the calculated requirement of the vitelline membrane (Straub), and (b) the observed heat production (Langworthy and Barott). Thus even if the vitelline membrane is capable of using energy to do osmotic work, the yolk is only capable of supplying it by means of its glycolytic mechanism if the whole energy output of the whole yolk can be made available for doing work at the membrane.


2018 ◽  
pp. 94-100
Author(s):  
John R. B. Lighton

This chapter demystifies respirometry equations, showing how they can be derived using a simple mental trick: focusing the analysis on the principal gas that is neither consumed nor produced by animals. The effect of dilution of oxygen by carbon dioxide, the enrichment of carbon dioxide by the consumption of oxygen, and the effects of water vapor on the concentrations of both gases are described and quantified. A system of eight equations is derived that allow oxygen consumption and carbon dioxide production to be calculated in practically any feasible flow-through respirometry system.


Sign in / Sign up

Export Citation Format

Share Document