The Relations Between Yolk and White in the Hen'S Egg

1931 ◽  
Vol 8 (3) ◽  
pp. 319-329
Author(s):  
JOSEPH NEEDHAM ◽  
MARJORY STEPHENSON ◽  
DOROTHY MOYLE NEEDHAM

1. The vitelline membrane of the infertile hen's egg exhibits no dehydrase activity. 2. The vitelline membrane has no measurable aerobic respiration in vitro, nor has the yolk of the infertile egg. This confirms the view that the carbon dioxide production of the intact egg is not the result of any true respiration. 3. When incubated anaerobically in vitro, bacteriologically sterile yolk produces consistently small amounts of lactic acid. 4. This glycolysis is not the result of any catalytic activity of the vitelline membrane, but takes place throughout the substance of the yolk. 5. Under similar conditions, bacteriologically sterile yolk produces small amounts of a substance or substances estimatable as ethyl alcohol. 6. If the yolk suspension is bacterially contaminated, however, lactic acid and alcohol are produced in amounts closely similar to those found by earlier workers on this subject. 7. The heat of glycolysis, under anaerobic conditions, calculated from the amounts of lactic acid experimentally found to be formed, is of the same order as (a) the calculated requirement of the vitelline membrane (Straub), and (b) the observed heat production (Langworthy and Barott). Thus even if the vitelline membrane is capable of using energy to do osmotic work, the yolk is only capable of supplying it by means of its glycolytic mechanism if the whole energy output of the whole yolk can be made available for doing work at the membrane.

Perfusion ◽  
2016 ◽  
Vol 32 (1) ◽  
pp. 4-12 ◽  
Author(s):  
Marco Ranucci ◽  
Giovanni Carboni ◽  
Mauro Cotza ◽  
Filip de Somer

Carbon dioxide production during cardiopulmonary bypass derives from both the aerobic metabolism and the buffering of lactic acid produced by tissues under anaerobic conditions. Therefore, carbon dioxide removal monitoring is an important measure of the adequacy of perfusion and oxygen delivery. However, routine monitoring of carbon dioxide removal is not widely applied. The present article reviews the main physiological and pathophysiological sources of carbon dioxide, the available techniques to assess carbon dioxide production and removal and the clinically relevant applications of carbon dioxide-related variables as markers of the adequacy of perfusion during cardiopulmonary bypass.


1962 ◽  
Vol 156 (963) ◽  
pp. 139-143 ◽  

The metabolism of [U- 14 C]glucose and [3- 14 C]pyruvate in the adult rat retina is described. In vitro under aerobic conditions, in either phosphate or bicarbonate medium, glucose was converted into lactate, carbon dioxide, glutamate, γ -aminobutyrate, aspartate, glutamine and alanine. Under anaerobic conditions, total glucose metabolized was reduced to 60 to 70% of that under aerobic conditions, lactic acid being the only metabolic product detected. Under aerobic conditions [3- 14 C]pyruvate was converted by the retina into the same metabolites as was glucose. The quantitative data for oxygen uptake and 14 CO 2 formation were similar to those obtained with glucose as substrate; lactate production was lower and amino acid formation higher.


1958 ◽  
Vol 193 (3) ◽  
pp. 495-498 ◽  
Author(s):  
Ruth McClintock ◽  
Nathan Lifson

Measurements of oxygen consumption and carbon dioxide production were made by the Haldane open circuit method on hereditarily obese mice and littermate controls, and the energy expenditures were estimated. Studies were made on mice for short periods under ‘basal’ conditions, and for periods of approximately a day with the mice fasted and confined, fasted and relatively unconfined, and fed and unconfined. The total energy expenditures of fed and unconfined obese mice were found to be higher than those of nonobese littermate controls by virtue of a) increased ‘basal metabolism’, b) greater energy expenditure associated with feeding, and possibly c) larger energy output for activity despite reduced voluntary movement. The values obtained for total metabolism confirm those previously determined by an isotope method for measuring CO2 output.


1972 ◽  
Vol 27 (3) ◽  
pp. 553-560 ◽  
Author(s):  
J. L. Clapperton ◽  
J. W. Czerkawski

1. Propane-1:2-diol (loog/d) was infused through a cannula into the rumen of sheep receiving a ration of hay and dried grass. The concentration of volatile fatty acids, propanediol, lactic acid and of added polyethylene glycol, and the pH of the rumen contents were measured. The energy metabolism of the sheep was also determined.2. Most of the propanediol disappeared from the rumen within 4 h of its infusion. The infusion of propanediol resulted in a 10% decrease in the concentration of total volatile acids; the concentration of acetic acid decreased by about 30%, that of propionic acid increased by up to 60% and there was no change in the concentration of butyric acid.3. The methane production of the sheep decreased by about 9% after the infusion of propanediol and there were increases in the oxgyen consumption, carbon dioxide production and heat production of the animals; each of these increases was equivalent to about 40% of the theoretical value for the complete metabolism of 100 g propanediol.4. It is concluded that, when propanediol is introduced into the rumen, a proportion is metabolized in the rumen and a large proportion is absorbed directly. Our thanks are due to Dr J. H. Moore for helpful discussions, to Mr D. R. Paterson, Mr J. R. McDill and Mr C. E. Park for looking after the animals and to Miss K. M. Graham, Miss A. T. McKay and Mrs C. E. Ramage for performing the analyses.


1957 ◽  
Vol 8 (1) ◽  
pp. 55 ◽  
Author(s):  
SJ Edmonds

The consumption of oxygen of Dendrostomum cymodoceae at 22'C in aerated sea-water varied from 4-5-5.5 μl/g (wet weight)/hr for adults to 20-31 μ/g/hr for juveniles. The production of carbon dioxide was 13-17 μ/g/hr (juveniles) and the R.Q. varied from 0.55 to 0.67 (juveniles). The rate of consunlption of oxygen decreased as the tension of the dissolved oxygen decreased. The oxygen combined with the pigment of the blood was 2.1 vols. of oxygen per 100 vols. of blood and the ratio of blood volume (ml) to total weight (g) of the animal was 0.47. D. cymodoceae was able to live under anaerobic conditions in sea-water for as long as 5 days and in paraffin oil for 4 days. The haemerythrin in the blood of animals kept under oil was found to be reduced after about 6 hr. Lactic acid was identified as one of the end-products of anaerobiosis. The concentration of lactic acid in the blood of animals living under anaerobic conditions increased after 60 hr from 7-12 to 46-61 μg/ml of blood. The ability to revert to anaerobiosis may have survival value for the species.


1953 ◽  
Vol 141 (904) ◽  
pp. 321-337 ◽  

Barker A Saifl (1953 b ), suggested that the initial rapid increase and the subsequent slower decrease in the CO 2 output of potatoes in air after a peroid under anaerobic conditions might be partly related to a quick formation of pyruvic acid from the accumulated lactic acid and to the respiration of the Pyruvic acid via krebs cycle (krebs & johnson 1937; krebs 1952). Information bearing on the associated changes in pyruvic and α-ketoglutaric acid has now been obtained using a technique (Friedemann & Haugen 1943; Friedemann 1950) which while not fully specific gives values that are known to include true pyruvic acid and true α-ketoglutaric acid as well as non-pyruvic and non-α-ketoglutaric acid material respectively. Associated with the loss of Lactic acid in air after nitrogen and the accompanying increase followed by a decrease in the CO 2 output, Mentioned above, there was first a rapid increase in the content of 'pyruvic' and 'α-ketoglutaric acid' and then a prolonged decrease in these fractions. The analysis of the interrelation between the loss of lactic acid and the production of CO 2 and of the keto-acids, and between the changes in the rate of CO2 output and the changes in the concentration of the keto-acids and of sucrose, is taken up in the next paper in this series (Barker & Mapson 1953).


Nature ◽  
1965 ◽  
Vol 208 (5005) ◽  
pp. 82-82 ◽  
Author(s):  
L. H. CAPEL ◽  
E. C. FLETCHER ◽  
J. F. NUNN

Sign in / Sign up

Export Citation Format

Share Document