Effect of neuromuscular blockade on oxygen consumption and energy expenditure in sedated, mechanically ventilated children

2000 ◽  
Vol 28 (5) ◽  
pp. 1569-1571 ◽  
Author(s):  
Donald D. Vernon ◽  
Madolin K. Witte
1997 ◽  
Vol 12 (6) ◽  
pp. 321-323
Author(s):  
Robert L. Sheridan ◽  
Kathy Prelack ◽  
Stanislaw K. Szyfelbein

Minimizing the high oxygen consumption and energy expenditure of the critically ill is an important therapeutic goal. This study was done to determine if neuromuscular blockade decreases oxygen consumption or energy expenditure more than sedation alone in the mechanically ventilated child. Twelve burned children, with an average age of 5.1- 1.6 yrs, average weight of 22.8 − 6.5 kg, and average burn size of 28.3 − 5.8% of the body surface, scheduled for a planned surgical procedure under general anesthesia were enrolled in this prospective self-controlled study. In conjunction with planned operative procedures and using an intravenous anesthetic technique, the children underwent expired gas collection before and after neuromuscular blockade was induced. Expired gas was collected and analyzed for the fractional concentration of oxygen and carbon dioxide. Oxygen consumption (VO2), carbon dioxide production (VCO2), energy expenditure (EE), and respiratory quotient (RQ) were calculated. We found no significant difference in EE, VO2, VCO2, or RQ between the well-sedated and mechanically ventilated and the well-sedated, mechanically ventilated and paralyzed states. We therefore concluded that neuromuscular blockade does not decrease energy expenditure in the otherwise well-sedated burned child.


2017 ◽  
Vol 12 (4) ◽  
pp. 504-513 ◽  
Author(s):  
Charles-Mathieu Lachaume ◽  
François Trudeau ◽  
Jean Lemoyne

The purpose of this study was to investigate the energy expenditure and heart rate responses elicited in elite male midget ice hockey players during small-sided games. Nine players (aged 15.89 ± 0.33 years) participated in the study. Maximal progressive treadmill testing in the laboratory measured the relationship of oxygen consumption ([Formula: see text]) to heart rate before on-ice assessments of heart rate during six different small-sided games: 1v1, 2v2, 2v2 with support player, 3v3 with support player, 3v3 with transitions, and 4v4 with two support players. Heart rate was recorded continuously in each game. 3v3 T small-sided game was the most intense for all four intensity markers. All six small-sided games reached 89% HRmax or more with heart rate peaks in active effort repetition. These findings demonstrate that such small-sided games are considered as high intensity games and are an effective training method for ice hockey players.


Author(s):  
Andrew N. Bosch ◽  
Kirsten C. Flanagan ◽  
Maaike M. Eken ◽  
Adrian Withers ◽  
Jana Burger ◽  
...  

Elliptical trainers and steppers are proposed as useful exercise modalities in the rehabilitation of injured runners due to the reduced stress on muscles and joints when compared to running. This study compared the physiological responses to submaximal running (treadmill) with exercise on the elliptical trainer and stepper devices at three submaximal but identical workloads. Authors had 18 trained runners (male/female: N = 9/9, age: mean ± SD = 23 ± 3 years) complete randomized maximal oxygen consumption tests on all three modalities. Submaximal tests of 3 min were performed at 60%, 70%, and 80% of peak workload individually established for each modality. Breath-by-breath oxygen consumption, heart rate, fuel utilization, and energy expenditure were determined. The value of maximal oxygen consumption was not different between treadmill, elliptical, and stepper (49.3 ± 5.3, 48.0 ± 6.6, and 46.7 ± 6.2 ml·min−1·kg−1, respectively). Both physiological measures (oxygen consumption and heart rate) as well as carbohydrate and fat oxidation differed significantly between the different exercise intensities (60%, 70%, and 80%) but did not differ between the treadmill, elliptical trainer, and stepper. Therefore, the elliptical trainer and stepper are suitable substitutes for running during periods when a reduced running load is required, such as during rehabilitation from running-induced injury.


1989 ◽  
Vol 256 (4) ◽  
pp. E467-E474 ◽  
Author(s):  
P. Hallgren ◽  
L. Sjostrom ◽  
H. Hedlund ◽  
L. Lundell ◽  
L. Olbe

The oxygen consumption of human adipose tissue (AT) was determined in 53 adults, lean and obese, and in nine lean boys. The oxygen consumption was positively related to fat cell weight and negatively to age and degree of obesity. Men and women did not differ with respect to oxygen consumption of AT. The positive relationship between oxygen consumption per cell and fat cell size was also demonstrated in size-separated cells from the same donors. Expressed per cell the oxygen consumption was higher in fat cells from obese than in cells from lean subjects, but expressed per gram of tissue the opposite result was found. The oxygen consumption of the total AT organ was higher in obese than in lean subjects. The energy expenditure of AT constituted approximately 4% of the estimated 24-h energy expenditure in both groups. It is concluded that obese subjects do not maintain their obesity because of a reduced energy expenditure of the total AT (or of the total body). After a partial weight reduction in five subjects, the energy metabolism tended to change in direction toward the conditions seen in lean subjects. However, it is still an open question whether the observed energy metabolic aberrations of obese human AT are only secondary to the obese state or partly primary and thus of etiological importance.


1958 ◽  
Vol 193 (3) ◽  
pp. 495-498 ◽  
Author(s):  
Ruth McClintock ◽  
Nathan Lifson

Measurements of oxygen consumption and carbon dioxide production were made by the Haldane open circuit method on hereditarily obese mice and littermate controls, and the energy expenditures were estimated. Studies were made on mice for short periods under ‘basal’ conditions, and for periods of approximately a day with the mice fasted and confined, fasted and relatively unconfined, and fed and unconfined. The total energy expenditures of fed and unconfined obese mice were found to be higher than those of nonobese littermate controls by virtue of a) increased ‘basal metabolism’, b) greater energy expenditure associated with feeding, and possibly c) larger energy output for activity despite reduced voluntary movement. The values obtained for total metabolism confirm those previously determined by an isotope method for measuring CO2 output.


Sign in / Sign up

Export Citation Format

Share Document