Ultrasonic Detection of In-vivo Cavitation and Pressure Effects of High-speed Injections Through Catheters

1969 ◽  
Vol 4 (4) ◽  
pp. 236-240
Author(s):  
A. A. Bove ◽  
M. C. Ziskin ◽  
W. L. Mulchin
Author(s):  
Xiaodong Yu ◽  
Yu Wang ◽  
Junfeng Wang ◽  
Wenkai Zhou ◽  
Hongwei Bi ◽  
...  

Background: Hydrostatic bearings have the advantages of strong bearing capacity, good stability, small friction coefficient and long life. The performance of liquid hydrostatic bearings directly affect the accuracy and efficiency of CNC machining equipment. The performance is conducive to the development of CNC machine tools towards high speed and heavy load, so it is necessary to sort out and summarize the existing research results. Objective: This study summarizes the current development status of hydrostatic bearings and explains the development trend of hydrostatic bearings. Methods: According to the recently published journal articles and patents, the recent experimental research on hydrostatic thrust bearings is summarized. This paper summarizes many factors that affect the performance of hydrostatic bearings, and discusses the causes of various factors on hydrostatic bearings. Finally, future research on hydrostatic bearings is presented. Results: The study discusses experimental methods, simulation processes, and experimental results. Conclusion: This study can produce dynamic and static pressure effects by changing the structure of the oil cavity of the hydrostatic bearing. This effect can make up for the static pressure loss. By improving the theoretical formula and mathematical model and proposing a new simulation method, the accuracy of the hydrostatic bearing simulation is satisfied; the future development trend of the hydrostatic bearing is proposed.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiang Lan Fan ◽  
Jose A. Rivera ◽  
Wei Sun ◽  
John Peterson ◽  
Henry Haeberle ◽  
...  

AbstractUnderstanding the structure and function of vasculature in the brain requires us to monitor distributed hemodynamics at high spatial and temporal resolution in three-dimensional (3D) volumes in vivo. Currently, a volumetric vasculature imaging method with sub-capillary spatial resolution and blood flow-resolving speed is lacking. Here, using two-photon laser scanning microscopy (TPLSM) with an axially extended Bessel focus, we capture volumetric hemodynamics in the awake mouse brain at a spatiotemporal resolution sufficient for measuring capillary size and blood flow. With Bessel TPLSM, the fluorescence signal of a vessel becomes proportional to its size, which enables convenient intensity-based analysis of vessel dilation and constriction dynamics in large volumes. We observe entrainment of vasodilation and vasoconstriction with pupil diameter and measure 3D blood flow at 99 volumes/second. Demonstrating high-throughput monitoring of hemodynamics in the awake brain, we expect Bessel TPLSM to make broad impacts on neurovasculature research.


Author(s):  
Xiufeng Li ◽  
Victor T C Tsang ◽  
Lei Kang ◽  
Yan Zhang ◽  
Terence T W Wong

AbstractLaser diodes (LDs) have been considered as cost-effective and compact excitation sources to overcome the requirement of costly and bulky pulsed laser sources that are commonly used in photoacoustic microscopy (PAM). However, the spatial resolution and/or imaging speed of previously reported LD-based PAM systems have not been optimized simultaneously. In this paper, we developed a high-speed and high-resolution LD-based PAM system using a continuous wave LD, operating at a pulsed mode, with a repetition rate of 30 kHz, as an excitation source. A hybrid scanning mechanism that synchronizes a one-dimensional galvanometer mirror and a two-dimensional motorized stage is applied to achieve a fast imaging capability without signal averaging due to the high signal-to-noise ratio. By optimizing the optical system, a high lateral resolution of 4.8 μm has been achieved. In vivo microvasculature imaging of a mouse ear has been demonstrated to show the high performance of our LD-based PAM system.


Author(s):  
Christopher Eckersley ◽  
Joost Op 't Eynde ◽  
Mitchell Abrams ◽  
Cameron R. Bass

Abstract Cavitation has been shown to have implications for head injury, but currently there is no solution for detecting the formation of cavitation through the skull during blunt impact. The goal of this communication is to confirm the wideband acoustic wavelet signature of cavitation collapse, and determine that this signature can be differentiated from the noise of a blunt impact. A controlled, laser induced cavitation study was conducted in an isolated water tank to confirm the wide band acoustic signature of cavitation collapse in the absence of a blunt impact. A clear acrylic surrogate head was impacted to induce blunt impact cavitation. The bubble formation was imaged using a high speed camera, and the collapse was synched up with the wavelet transform of the acoustic emission. Wideband acoustic response is seen in wavelet transform of positive laser induced cavitation tests, but absent in laser induced negative controls. Clear acrylic surrogate tests showed the wideband acoustic wavelet signature of collapse can be differentiated from acoustic noise generated by a blunt impact. Broadband acoustic signal can be used as a biomarker to detect the incidence of cavitation through the skull as it consists of frequencies that are low enough to potentially pass through the skull but high enough to differentiate from blunt impact noise. This lays the foundation for a vital tool to conduct CSF cavitation research in-vivo.


2012 ◽  
Vol 50 (2) ◽  
pp. 157-164
Author(s):  
F. Sommer ◽  
R. Kroger ◽  
J. Lindemann

Background: The temperature of inhaled air is highly relevant for the humidification process. Narrow anatomical conditions limit possibilities for in vivo measurements. Numerical simulations offer a great potential to examine the function of the human nose. Objective: In the present study, the nasal humidification of inhaled air was simulated simultaneously with temperature distribution during a respiratory cycle. Methods: A realistic nose model based on a multislice CT scan was created. The simulation was performed by the Software Fluent(r). Boundary conditions were based on previous in vivo measurements. Inhaled air had a temperature of 20(deg)C and relative humidity of 30%. The wall temperature was assumed to be variable from 34(deg)C to 30(deg)C with constant humidity saturation of 100% during the respiratory cycle. Results: A substantial increase in temperature and humidity can be observed after passing the nasal valve area. Areas with high speed air flow, e.g. the space around the turbinates, show an intensive humidification and heating potential. Inspired air reaches 95% humidity and 28(deg)C within the nasopharynx. Conclusion: The human nose features an enormous humidification and heating capability. Warming and humidification are dependent on each other and show a similar spacial pattern. Concerning the climatisation function, the middle turbinate is of high importance. In contrast to in vivo measurements, numerical simulations can explore the impact of airflow distribution on nasal air conditioning. They are an effective method to investigate nasal pathologies and impacts of surgical procedures.


2005 ◽  
Author(s):  
Erich Goetzinger ◽  
Michael Pircher ◽  
Rainer A. Leitgeb ◽  
Adolf F. Fercher ◽  
Christoph K. Hitzenberger

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Dierck Hillmann ◽  
Hendrik Spahr ◽  
Carola Hain ◽  
Helge Sudkamp ◽  
Gesa Franke ◽  
...  

2010 ◽  
Vol 42 (2) ◽  
pp. 300-309 ◽  
Author(s):  
Jordan T. Shin ◽  
Eugene V. Pomerantsev ◽  
John D. Mably ◽  
Calum A. MacRae

Phenotype-driven screens in larval zebrafish have transformed our understanding of the molecular basis of cardiovascular development. Screens to define the genetic determinants of physiological phenotypes have been slow to materialize as a result of the limited number of validated in vivo assays with relevant dynamic range. To enable rigorous assessment of cardiovascular physiology in living zebrafish embryos, we developed a suite of software tools for the analysis of high-speed video microscopic images and validated these, using established cardiomyopathy models in zebrafish as well as modulation of the nitric oxide (NO) pathway. Quantitative analysis in wild-type fish exposed to NO or in a zebrafish model of dilated cardiomyopathy demonstrated that these tools detect significant differences in ventricular chamber size, ventricular performance, and aortic flow velocity in zebrafish embryos across a large dynamic range. These methods also were able to establish the effects of the classic pharmacological agents isoproterenol, ouabain, and verapamil on cardiovascular physiology in zebrafish embryos. Sequence conservation between zebrafish and mammals of key amino acids in the pharmacological targets of these agents correlated with the functional orthology of the physiological response. These data provide evidence that the quantitative evaluation of subtle physiological differences in zebrafish can be accomplished at a resolution and with a dynamic range comparable to those achieved in mammals and provides a mechanism for genetic and small-molecule dissection of functional pathways in this model organism.


Sign in / Sign up

Export Citation Format

Share Document