scholarly journals Desferrioxamine Induces Delayed Tolerance against Cerebral Ischemia in Vivo and in Vitro

2002 ◽  
Vol 22 (5) ◽  
pp. 520-525 ◽  
Author(s):  
Konstantin Prass ◽  
Karsten Ruscher ◽  
Maria Karsch ◽  
Nikolay Isaev ◽  
Dirk Megow ◽  
...  

The widely prescribed drug desferrioxamine is a known activator of the hypoxia-inducible transcription factor 1 (HIF-1) and the subsequent transcription of erythropoietin. In the brain, HIF-1 is a master switch of the transcriptional response to hypoxia, whereas erythropoietin is a potent neuroprotectant. The authors show that desferrioxamine dose-dependently and time-dependently induces tolerance against focal cerebral ischemia in rats and mice, and against oxygen–glucose deprivation in purified cortical neurons. Desferrioxamine induced HIF-1 DNA binding and transcription of erythropoietin in vivo, the temporal kinetics of which were congruent with tolerance induction. Desferrioxamine is a promising drug for the induction of tolerance in humans when ischemia can be anticipated.

2007 ◽  
Vol 28 (4) ◽  
pp. 812-823 ◽  
Author(s):  
Richard Milner ◽  
Stephanie Hung ◽  
Xiaoyun Wang ◽  
Maria Spatz ◽  
Gregory J del Zoppo

During focal cerebral ischemia, the detachment of astrocytes from the microvascular basal lamina is not completely explained by known integrin receptor expression changes. Here, the impact of experimental ischemia (oxygen—glucose deprivation (OGD)) on dystroglycan expression by murine endothelial cells and astrocytes grown on vascular matrix laminin, perlecan, or collagen and the impact of middle cerebral artery occlusion on αβ-dystroglycan within cerebral microvessels of the nonhuman primate were examined. Dystroglycan was expressed on all cerebral microvessels in cortical gray and white matter, and the striatum. Astrocyte adhesion to basal lamina proteins was managed in part by α-dystroglycan, while ischemia significantly reduced expression of dystroglycan both in vivo and in vitro. Furthermore, dystroglycan and integrin α6β4 expressions on astrocyte end-feet decreased in parallel both in vivo and in vitro. The rapid loss of astrocyte dystroglycan during OGD appears protease-dependent, involving an matrix metalloproteinase-like activity. This may explain the rapid detachment of astrocytes from the microvascular basal lamina during ischemic injury, which could contribute to significant changes in microvascular integrity.


2020 ◽  
pp. 0271678X2097311
Author(s):  
Zhanyang Yu ◽  
Wenlu Li ◽  
Jing Lan ◽  
Kazuhide Hayakawa ◽  
Xunming Ji ◽  
...  

In order to rescue neuronal function, neuroprotection should be required not only for the neuron soma but also the dendrites. Here, we propose the hypothesis that ephrin-B2-EphB2 signaling may be involved in dendritic degeneration after ischemic injury. A mouse model of focal cerebral ischemia with middle cerebral artery occlusion (MCAO) method was used for EphB2 signaling test in vivo. Primary cortical neuron culture and oxygen-glucose deprivation were used to assess EphB2 signaling in vitro. siRNA and soluble ephrin-B2 ectodomain were used to block ephrin-B2-Ephb2 signaling. In the mouse model of focal cerebral ischemia and in neurons subjected to oxygen-glucose deprivation, clustering of ephrin-B2 with its receptor EphB2 was detected. Phosphorylation of EphB2 suggested activation of this signaling pathway. RNA silencing of EphB2 prevented neuronal death and preserved dendritic length. To assess therapeutic potential, we compared the soluble EphB2 ectodomain with the NMDA antagonist MK801 in neurons after oxygen-glucose deprivation. Both agents equally reduced lactate dehydrogenase release as a general marker of neurotoxicity. However, only soluble EphB2 ectodomain protected the dendrites. These findings provide a proof of concept that ephrin-B2-EphB2 signaling may represent a novel therapeutic target to protect both the neuron soma as well as dendrites against ischemic injury.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Masahiro Hatakeyama ◽  
Masato Kanazawa ◽  
Itaru Ninomiya ◽  
Kaoru Omae ◽  
Yasuko Kimura ◽  
...  

AbstractCell therapies that invoke pleiotropic mechanisms may facilitate functional recovery in patients with stroke. Based on previous experiments using microglia preconditioned by oxygen-glucose deprivation, we hypothesized that the administration of peripheral blood mononuclear cells (PBMCs) preconditioned by oxygen-glucose deprivation (OGD-PBMCs) to be a therapeutic strategy for ischemic stroke. Here, OGD-PBMCs were identified to secrete remodelling factors, including the vascular endothelial growth factor and transforming growth factor-β in vitro, while intra-arterial administration of OGD-PBMCs at 7 days after focal cerebral ischemia prompted expression of such factors in the brain parenchyma at 28 days following focal cerebral ischemia in vivo. Furthermore, administration of OGD-PBMCs induced an increasing number of stage-specific embryonic antigen-3-positive cells both in vitro and in vivo. Finally, it was found to prompt angiogenesis and axonal outgrowth, and functional recovery after cerebral ischemia. In conclusion, the administration of OGD-PBMCs might be a novel therapeutic strategy against ischemic stroke.


2004 ◽  
Vol 24 (6) ◽  
pp. 612-622 ◽  
Author(s):  
An Zhou ◽  
Manabu Minami ◽  
Xiaoman Zhu ◽  
Sylvia Bae ◽  
John Minthorne ◽  
...  

In this study, using both in vivo and in vitro ischemia models, the authors investigated the impact of brain ischemia on the biosynthesis of a key neuropeptide-processing enzyme, carboxypeptidase E (CPE). The response to brain ischemia of animals that lacked an active CPE was also examined. Combined in situ hybridization and immunocytochemical analyses for CPE showed reciprocal changes of CPE mRNA and protein, respectively, in the same cortical cells in rat brains after focal cerebral ischemia. Western blot analysis revealed an accumulation of the precursor protein of CPE in the ischemic cortex in vivo and in ischemic cortical neurons in vitro. Detailed metabolic labeling experiments on ischemic cortical neurons showed that ischemic stress caused a blockade in the proteolytic processing of CPE. When mice lacking an active CPE protease were subjected to a sublethal episode of focal cerebral ischemia, abundant TUNEL-positive cells were seen in the ischemic cortex whereas only a few were seen in the cortex of wild-type animals. These findings suggest that ischemia has an adverse impact on the neuropeptide-processing system in the brain and that the lack of an active neuropeptide-processing enzyme exacerbates ischemic brain injury.


2008 ◽  
Vol 28 (10) ◽  
pp. 1707-1721 ◽  
Author(s):  
Ádám Dénes ◽  
Szilamér Ferenczi ◽  
József Halász ◽  
Zsuzsanna Környei ◽  
Krisztina J Kovács

CX3CR1 (fractalkine receptor) is important for sustaining normal microglial activity in the brain. Lack of CX3CR1 reportedly results in neurotoxic microglial phenotype in disease models. The objective of this study was to test the hypothesis that the absence of CX3CR1 worsens the outcome in cerebral ischemia. We observed significantly smaller (56%) infarcts and blood—brain barrier damage in CX3CR1-deficient (CX3CR1−/−) animals compared with CX3CR1 +/− and wild-type mice after transient occlusion of the middle cerebral artery (MCAo). Functional recovery of CX3CR1−/−animals was enhanced, while less number of apoptotic cells and infiltrating leukocytes were found in the ipsilateral hemisphere. Expression of IL-1β mRNA, protein, and interleukin (IL)-1Ra and tumor necrosis factor (TNF)-α mRNAs was lower in CX3CR1−/− mice, whereas no difference was observed in the number of IL-1β-expressing microglia or plasma IL-1β concentration. We observed early IL-1β expression in astrocytes in vivo after MCAo and after oxygen—glucose deprivation in vitro, which might contribute to the ischemic damage. Our findings indicate that lack of CX3CR1 does not result in microglial neurotoxicity after MCAo, but rather significantly reduces ischemic damage and inflammation. Reduced IL-1β and TNFα expression as well as decreased leukocyte infiltration might be involved in the development of smaller infarcts in CX3CR1−/− animals.


2007 ◽  
Vol 85 (6) ◽  
pp. 621-627 ◽  
Author(s):  
Yan-Hong Li ◽  
Pei-Li Gong

We have previously reported that dauricine protects brain tissues from focal cerebral ischemia. To corroborate this effect, neurotoxicity due to hypoxia and hypoglycemia was assessed in primary cultures of rat cortical neurons by using a trypan blue exclusion method. To further clarify the mechanism, the intracellular Ca2+ concentration ([Ca2+]i) and mitochondrial membrane potential (ΔΨm) of dissociated rat cortical cells were monitored by fura-2 fluorescence measurements and flow cytometry, respectively. The results showed that 1 and 10 μmol/L dauricine significantly enhanced neuronal survival during 4 h of hypoxia and hypoglycemia. Dauricine inhibited the increase in [Ca2+]i and decrease in ΔΨm induced by 30 min of hypoxia and hypoglycemia. When exploring the pathway, we found that 1 μmol/L dauricine inhibited the [Ca2+]i increase induced by 7.5 nmol/L thapsigargin in either the presence or absence of extracellular Ca2+ and by 1 mmol/L l-glutamate in the presence of extracellular Ca2+. These results suggest that dauricine prevents neuronal loss from ischemia in vitro, which is in accordance with our previous research in vivo. In addition, by inhibiting Ca2+ release from the endoplasmic reticulum and Ca2+ influx from the extracellular space, dauricine suppressed the increase in [Ca2+]i and, subsequently, the decrease in ΔΨm induced by hypoxia and hypoglycemia. This effect may underlie the mechanism of action of dauricine on cerebral ischemia.


Human Cell ◽  
2021 ◽  
Author(s):  
Jiaying Zhu ◽  
Zhu Zhu ◽  
Yipin Ren ◽  
Yukang Dong ◽  
Yaqi Li ◽  
...  

AbstractLINGO-1 may be involved in the pathogenesis of cerebral ischemia. However, its biological function and underlying molecular mechanism in cerebral ischemia remain to be further defined. In our study, middle cerebral artery occlusion/reperfusion (MACO/R) mice model and HT22 cell oxygen–glucose deprivation/reperfusion (OGD/R) were established to simulate the pathological process of cerebral ischemia in vivo and in vitro and to detect the relevant mechanism. We found that LINGO-1 mRNA and protein were upregulated in mice and cell models. Down-regulation LINGO-1 improved the neurological symptoms and reduced pathological changes and the infarct size of the mice after MACO/R. In addition, LINGO-1 interference alleviated apoptosis and promoted cell proliferation in HT22 of OGD/R. Moreover, down-regulation of LINGO-1 proved to inhibit nuclear translocation of p-NF-κB and reduce the expression level of p-JAK2 and p-STAT3. In conclusion, our data suggest that shLINGO-1 attenuated ischemic injury by negatively regulating NF-KB and JAK2/STAT3 pathways, highlighting a novel therapeutic target for ischemic stroke.


2005 ◽  
Vol 2 (2) ◽  
pp. 201-207 ◽  
Author(s):  
Masamitsu Shimazawa ◽  
Satomi Chikamatsu ◽  
Nobutaka Morimoto ◽  
Satoshi Mishima ◽  
Hiroichi Nagai ◽  
...  

We examined whether Brazilian green propolis, a widely used folk medicine, has a neuroprotective functionin vitroand/orin vivo.In vitro, propolis significantly inhibited neurotoxicity induced in neuronally differentiated PC12 cell cultures by either 24 h hydrogen peroxide (H2O2) exposure or 48 h serum deprivation. Regarding the possible underlying mechanism, propolis protected against oxidative stress (lipid peroxidation) in mouse forebrain homogenates and scavenged free radicals [induced by diphenyl-p-picrylhydrazyl (DPPH). In micein vivo, propolis [30 or 100 mg/kg; intraperitoneally administered four times (at 2 days, 1 day and 60 min before, and at 4 h after induction of focal cerebral ischemia by permanent middle cerebral artery occlusion)] reduced brain infarction at 24 h after the occlusion. Thus, a propolis-induced inhibition of oxidative stress may be partly responsible for its neuroprotective function againstin vitrocell death andin vivofocal cerebral ischemia.


2018 ◽  
Vol 39 (12) ◽  
pp. 2406-2418 ◽  
Author(s):  
Su Jing Chan ◽  
Hui Zhao ◽  
Kazuhide Hayakawa ◽  
Chou Chai ◽  
Chong Teik Tan ◽  
...  

Modulator of apoptosis 1 (MOAP-1) is a Bax-associating protein highly enriched in the brain. In this study, we examined the role of MOAP-1 in promoting ischemic injuries following a stroke by investigating the consequences of MOAP-1 overexpression or deficiency in in vitro and in vivo models of ischemic stroke. MOAP-1 overexpressing SH-SY5Y cells showed significantly lower cell viability following oxygen and glucose deprivation (OGD) treatment when compared to control cells. Consistently, MOAP-1−/− primary cortical neurons were observed to be more resistant against OGD treatment than the MOAP-1+/+ primary neurons. In the mouse transient middle cerebral artery occlusion (tMCAO) model, ischemia triggered MOAP-1/Bax association, suggested activation of the MOAP-1-dependent apoptotic cascade. MOAP-1−/− mice were found to exhibit reduced neuronal loss and smaller infarct volume 24 h after tMCAO when compared to MOAP-1+/+ mice. Correspondingly, MOAP-1−/− mice also showed better integrity of neurological functions as demonstrated by their performance in the rotarod test. Therefore, both in vitro and in vivo data presented strongly support the conclusion that MOAP-1 is an important apoptotic modulator in ischemic injury. These results may suggest that a reduction of MOAP-1 function in the brain could be a potential therapeutic approach in the treatment of acute stroke.


Sign in / Sign up

Export Citation Format

Share Document