Gentamicin Sulfate in the Treatment of Extra-Urinary Infections Due to Gram-Negative Bacteria

1967 ◽  
Vol 60 (2) ◽  
pp. 142-144 ◽  
Author(s):  
H HARLAN STONE ◽  
LAURA KOLB
2014 ◽  
Vol 142 (9-10) ◽  
pp. 551-556
Author(s):  
Bojana Markovic-Zivkovic ◽  
Goran Bjelakovic ◽  
Aleksandar Nagorni ◽  
Daniela Benedeto-Stojanov ◽  
Bratislav Petrovic ◽  
...  

Introduction. Bacterial infections are common complications and the cause of death in patients with cirrhosis and ascites. There is no standard method for a rapid and low-cost diagnosis, and its prognosis is poor. Objective. The aim of this study was to determine the etiology and frequency of bacterial infections in patients with liver cirrhosis of different etiology, and the influence of bacterial infections on the prognosis in patients with liver cirrhosis and ascites. Methods. Sixty-four patients with cirrhosis and ascites were included in the study. The diagnosis of spontaneous bacterial peritonitis was established based on the diagnostic abdominal paracentesis and the results of biochemical, cytological and microbiologic analysis of ascitic fluid. The diagnosis of urinary infection and pneumonia were made according to the standard criteria. Results. Spontaneous bacterial peritonitis was diagnosed in 23 (35.9%) patients, urinary infections in 16 (25%) and pneumonia in 11 (17.2%). Gram positive and gram negative bacteria in spontaneous bacterial peritonitis were etiologically almost equally represented (52%; 48%). The most frequent causes were Escherichia coli and Staphylococcus aureus. In 81% of patients urinary infections were caused by gram negative bacteria (Escherichia coli in 44%). The most frequent cause of pneumonia was Streptococcus pneumoniae (46%). Conclusion. Spontaneous bacterial peritonitis, urinary infections and bronchopneumonia are the most frequent bacterial infections in patients with liver cirrhosis and ascites. A timely recognition of bacterial infections and the initiation of treatment have a positive effect on the prognosis of such patients.


Author(s):  
Roger C. Wagner

Bacteria exhibit the ability to adhere to the apical surfaces of intestinal mucosal cells. These attachments either precede invasion of the intestinal wall by the bacteria with accompanying inflammation and degeneration of the mucosa or represent permanent anchoring sites where the bacteria never totally penetrate the mucosal cells.Endemic gram negative bacteria were found attached to the surface of mucosal cells lining the walls of crypts in the rat colon. The bacteria did not intrude deeper than 0.5 urn into the mucosal cells and no degenerative alterations were detectable in the mucosal lining.


Author(s):  
Jacob S. Hanker ◽  
Paul R. Gross ◽  
Beverly L. Giammara

Blood cultures are positive in approximately only 50 per cent of the patients with nongonococcal bacterial infectious arthritis and about 20 per cent of those with gonococcal arthritis. But the concept that gram-negative bacteria could be involved even in chronic arthritis is well-supported. Gram stains are more definitive in staphylococcal arthritis caused by gram-positive bacteria than in bacterial arthritis due to gram-negative bacteria. In the latter situation where gram-negative bacilli are the problem, Gram stains are helpful for 50% of the patients; they are only helpful for 25% of the patients, however, where gram-negative gonococci are the problem. In arthritis due to gram-positive Staphylococci. Gramstained smears are positive for 75% of the patients.


Author(s):  
Xie Nianming ◽  
Ding Shaoqing ◽  
Wang Luping ◽  
Yuan Zenglin ◽  
Zhan Guolai ◽  
...  

Perhaps the data about periplasmic enzymes are obtained through biochemical methods but lack of morphological description. We have proved the existence of periplasmic bodies by electron microscope and described their ultrastructures. We hope this report may draw the attention of biochemists and mrophologists to collaborate on researches in periplasmic enzymes or periplasmic bodies with each other.One or more independent bodies may be seen in the periplasmic space between outer and inner membranes of Gram-negative bacteria, which we called periplasmic bodies. The periplasmic bodies have been found in seven species of bacteria at least, including the Pseudomonas aeroginosa. Shigella flexneri, Echerichia coli. Yersinia pestis, Campylobacter jejuni, Proteus mirabilis, Clostridium tetani. Vibrio cholerae and Brucella canis.


Author(s):  
Jacob S. Hanker ◽  
Dale N. Holdren ◽  
Kenneth L. Cohen ◽  
Beverly L. Giammara

Keratitis and conjunctivitis (infections of the cornea or conjunctiva) are ocular infections caused by various bacteria, fungi, viruses or parasites; bacteria, however, are usually prominent. Systemic conditions such as alcoholism, diabetes, debilitating disease, AIDS and immunosuppressive therapy can lead to increased susceptibility but trauma and contact lens use are very important factors. Gram-negative bacteria are most frequently cultured in these situations and Pseudomonas aeruginosa is most usually isolated from culture-positive ulcers of patients using contact lenses. Smears for staining can be obtained with a special swab or spatula and Gram staining frequently guides choice of a therapeutic rinse prior to the report of the culture results upon which specific antibiotic therapy is based. In some cases staining of the direct smear may be diagnostic in situations where the culture will not grow. In these cases different types of stains occasionally assist in guiding therapy.


Author(s):  
J Hanker ◽  
E.J. Burkes ◽  
G. Greco ◽  
R. Scruggs ◽  
B. Giammara

The mature neutrophil with a segmented nucleus (usually having 3 or 4 lobes) is generally considered to be the end-stage cell of the neutrophil series. It is usually found as such in the bone marrow and peripheral blood where it normally is the most abundant leukocyte. Neutrophils, however, must frequently leave the peripheral blood and migrate into areas of infection to combat microorganisms. It is in such areas that neutrophils were first observed to fragment to form platelet-size particles some of which have a nuclear lobe. These neutrophil pseudoplatelets (NPP) can readily be distinguished from true platelets because they stain for neutrophil myeloperoxidase. True platelets are not positive in this staining reaction because their peroxidase Is inhibited by glutaraldehyde. Neutrophil pseudoplatelets, as well as neutrophils budding to form NPP, could frequently be observed in peripheral blood or bone marrow samples of leukemia patients. They are much more prominent, however, in smears of inflammatory exudates that contain gram-negative bacteria and in gingival crevicular fluid samples from periodontal disease sites. In some of these samples macrophages ingesting, or which contained, pseudoplatelets could be observed. The myeloperoxidase in the ingested pseudoplatelets was frequently active. Despite these earlier observations we did not expect to find many NPP in subgingival plaque smears from diseased sites. They were first seen by light microscopy (Figs. 1, 3-5) in smears on coverslips stained with the PATS reaction, a variation of the PAS reaction which deposits silver for light and electron microscopy. After drying replicate PATS-stained coverslips with hexamethyldisilazane, they were sputter coated with gold and then examined by the SEI and BEI modes of scanning electron microscopy (Fig. 2). Unstained replicate coverslips were fixed, and stained for the demonstration of myeloperoxidase in budding neutrophils and NPP. Neutrophils, activated macrophages and spirochetes as well as other gram-negative bacteria were also prominent in the PATS stained samples. In replicate subgingival plaque smears stained with our procedure for granulocyte peroxidases only neutrophils, budding neutrophils or NPP were readily observed (Fig. 6).


Author(s):  
Rubal C Das ◽  
Rajib Banik ◽  
Robiul Hasan Bhuiyan ◽  
Md Golam Kabir

Macrophomina phaseolina is one of the pathogenic organisms of gummosis disease of orange tree (Citrus reticulata). The pathogen was identified from the observation of their colony size, shape, colour, mycelium, conidiophore, conidia, hyaline, spore, and appressoria in the PDA culture. The crude chloroform extracts from the organism showed antibacterial activity against a number of Gram positive and Gram-negative bacteria. The crude chloroform extract also showed promising antifungal activity against three species of the genus Aspergillus. The minimum inhibitory concentration (MIC) of the crude chloroform extract from M. phaseolina against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Shigella sonnie were 128 ?gm, 256 ?gm, 128 ?gm and 64 ?gm/ml respectively. The LD50 (lethal dose) values of the cytotoxicity assay over brine shrimp of the crude chloroform extract from M. phaseolina was found to be 51.79 ?gm/ml. DOI: http://dx.doi.org/10.3329/cujbs.v5i1.13378 The Chittagong Univ. J. B. Sci.,Vol. 5(1 &2):125-133, 2010


2019 ◽  
Vol 10 ◽  
pp. 1864-1872
Author(s):  
Prof. Teodora P. Popova

The effect of ionized aqueous solutions (anolytes and catholyte) in the processing of fruits (cherries, morellos, and strawberries) for decontamination has been tested. Freshly prepared analytes and catholyte without the addition of salts were used, as well as stored for 7 months anolytes, prepared with 0.5% NaCl and a combination of 0.5% NaCl and 0.5% Na2CO3. The anolyte prepared with a combination of 0.5% NaCl and 0.5% Na2CO3, as well as the anolyte obtained with 0.5% NaCl, exhibit high antimicrobial activity against the surface microflora of strawberries, cherries, and sour cherries. They inactivate E. coli for 15 minutes. The other species of the fam. Enterobacteriaceae were also affected to the maximum extent, as is the total number of microorganisms, especially in cherries and sour cherries. Even stored for 7 months, they largely retain their antimicrobial properties. Anolyte and catholyte, obtained without the addition of salts, showed a lower effect on the total number of microorganisms, but had a significant effect on Gram-negative bacteria, and especially with regard to the sanitary indicative E. coli.


Sign in / Sign up

Export Citation Format

Share Document