scholarly journals Stearoyl-CoA desaturase 1 inhibitor supplemented with gemcitabine treatment reduces the viability and fatty acid content of pancreatic cancer cells in vitro

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Amon B. Hackney ◽  
Wen Y. Chung ◽  
John Isherwood ◽  
Ashley R. Dennison ◽  
Naomi Martin
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ryota Takahashi ◽  
Hideaki Ijichi ◽  
Makoto Sano ◽  
Koji Miyabayashi ◽  
Dai Mohri ◽  
...  

AbstractPancreatic cancer is one of the malignant diseases with the worst prognosis. Resistance to chemotherapy is a major difficulty in treating the disease. We analyzed plasma samples from a genetically engineered mouse model of pancreatic cancer and found soluble vascular cell adhesion molecule-1 (sVCAM-1) increases in response to gemcitabine treatment. VCAM-1 was expressed and secreted by murine and human pancreatic cancer cells. Subcutaneous allograft tumors with overexpression or knock-down of VCAM-1, as well as VCAM-1-blocking treatment in the spontaneous mouse model of pancreatic cancer, revealed that sVCAM-1 promotes tumor growth and resistance to gemcitabine treatment in vivo but not in vitro. By analyzing allograft tumors and co-culture experiments, we found macrophages were attracted by sVCAM-1 to the tumor microenvironment and facilitated resistance to gemcitabine in tumor cells. In a clinical setting, we found that the change of sVCAM-1 in the plasma of patients with advanced pancreatic cancer was an independent prognostic factor for gemcitabine treatment. Collectively, gemcitabine treatment increases the release of sVCAM-1 from pancreatic cancer cells, which attracts macrophages into the tumor, thereby promoting the resistance to gemcitabine treatment. sVCAM-1 may be a potent clinical biomarker and a potential target for the therapy in pancreatic cancer.


2010 ◽  
Vol 999 (999) ◽  
pp. 1-11
Author(s):  
P. Ulivi ◽  
C. Arienti ◽  
W. Zoli ◽  
M. Scarsella ◽  
S. Carloni ◽  
...  

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fumihiko Matsuzawa ◽  
Hirofumi Kamachi ◽  
Tatsuzo Mizukami ◽  
Takahiro Einama ◽  
Futoshi Kawamata ◽  
...  

Abstract Background Mesothelin is a 40-kDa glycoprotein that is highly overexpressed in various types of cancers, however molecular mechanism of mesothelin has not been well-known. Amatuximab is a chimeric monoclonal IgG1/k antibody targeting mesothelin. We recently demonstrated that the combine therapy of Amatuximab and gemcitabine was effective for peritonitis of pancreatic cancer in mouse model. Methods We discover the role and potential mechanism of mesothelin blockage by Amatuximab in human pancreatic cells both expressing high or low level of mesothelin in vitro experiment and peritonitis mouse model of pancreatic cancer. Results Mesothelin blockage by Amatuximab lead to suppression of invasiveness and migration capacity in AsPC-1 and Capan-2 (high mesothelin expression) and reduce levels of pMET expression. The combination of Amatuximab and gemcitabine suppressed proliferation of AsPC-1 and Capan-2 more strongly than gemcitabine alone. These phenomena were not observed in Panc-1 and MIA Paca-2 (Mesothelin low expression). We previously demonstrated that Amatuximab reduced the peritoneal mass in mouse AsPC-1 peritonitis model and induced sherbet-like cancer cell aggregates, which were vanished by gemcitabine. In this study, we showed that the cancer stem cell related molecule such as ALDH1, CD44, c-MET, as well as proliferation related molecules, were suppressed in sherbet-like aggregates, but once sherbet-like aggregates attached to peritoneum, they expressed these molecules strongly without the morphological changes. Conclusions Our work suggested that Amatuximab inhibits the adhesion of cancer cells to peritoneum and suppresses the stemness and viability of those, that lead to enhance the sensitivity for gemcitabine.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2017
Author(s):  
Lital Sharvit ◽  
Rinat Bar-Shalom ◽  
Naiel Azzam ◽  
Yaniv Yechiel ◽  
Solomon Wasser ◽  
...  

Pancreatic cancer is a highly lethal disease with limited options for effective therapy and the lowest survival rate of all cancer forms. Therefore, a new, effective strategy for cancer treatment is in need. Previously, we found that a culture liquid extract of Cyathus striatus (CS) has a potent antitumor activity. In the present study, we aimed to investigate the effects of Cyathus striatus extract (CSE) on the growth of pancreatic cancer cells, both in vitro and in vivo. The proliferation assay (XTT), cell cycle analysis, Annexin/PI staining and TUNEL assay confirmed the inhibition of cell growth and induction of apoptosis by CSE. A Western blot analysis demonstrated the involvement of both the extrinsic and intrinsic apoptosis pathways. In addition, a RNAseq analysis revealed the involvement of the MAPK and P53 signaling pathways and pointed toward endoplasmic reticulum stress induced apoptosis. The anticancer activity of the CSE was also demonstrated in mice harboring pancreatic cancer cell line-derived tumor xenografts when CSE was given for 5 weeks by weekly IV injections. Our findings suggest that CSE could potentially be useful as a new strategy for treating pancreatic cancer.


2020 ◽  
Vol 3 (1) ◽  
pp. 15
Author(s):  
César Ray ◽  
Andrés García-Sampedro ◽  
Christopher Schad ◽  
Edurne Avellanal-Zaballa ◽  
Florencio Moreno ◽  
...  

A new approach for the rapid multi-functionalization of BODIPY dyes towards biophotonics is reported. It is based on novel N-BODIPYs, through reactive intermediates with alkynyl groups to be further derivatized by click chemistry. This approach has been exemplified by the development of new dyes for cell bio-imaging, which have proven to successfully internalize into pancreatic cancer cells and accumulate in the mitochondria. The in vitro suitability for photodynamic therapy (PDT) was also analyzed and confirmed our compounds to be promising PDT candidates for the treatment of pancreatic cancer.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 249
Author(s):  
Ruediger Goess ◽  
Ayse Ceren Mutgan ◽  
Umut Çalışan ◽  
Yusuf Ceyhun Erdoğan ◽  
Lei Ren ◽  
...  

Background: Pancreatic cancer‐associated diabetes mellitus (PC‐DM) is present in most patients with pancreatic cancer, but its pathogenesis remains poorly understood. Therefore, we aimed to characterize tumor infiltration in Langerhans islets in pancreatic cancer and determine its clinical relevance. Methods: Langerhans islet invasion was systematically analyzed in 68 patientswith pancreatic ductal adenocarcinoma (PDAC) using histopathological examination and 3D in vitro migration assays were performed to assess chemoattraction of pancreatic cancer cells to isletcells. Results: Langerhans islet invasion was present in all patients. We found four different patterns of islet invasion: (Type I) peri‐insular invasion with tumor cells directly touching the boundary, but not penetrating the islet; (Type II) endo‐insular invasion with tumor cells inside the round islet; (Type III) distorted islet structure with complete loss of the round islet morphology; and (Type IV)adjacent cancer and islet cells with solitary islet cells encountered adjacent to cancer cells. Pancreatic cancer cells did not exhibit any chemoattraction to islet cells in 3D assays in vitro. Further, there was no clinical correlation of islet invasion using the novel Islet Invasion Severity Score (IISS), which includes all invasion patterns with the occurrence of diabetes mellitus. However, Type IV islet invasion was related to worsened overall survival in our cohort. Conclusions: We systematically analyzed, for the first time, islet invasion in human pancreatic cancer. Four different main patterns of islet invasion were identified. Diabetes mellitus was not related to islet invasion. However, moreresearch on this prevailing feature of pancreatic cancer is needed to better understand underlying principles.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Feng Guo ◽  
Yingke Zhou ◽  
Hui Guo ◽  
Dianyun Ren ◽  
Xin Jin ◽  
...  

AbstractNR5A2 is a transcription factor regulating the expression of various oncogenes. However, the role of NR5A2 and the specific regulatory mechanism of NR5A2 in pancreatic ductal adenocarcinoma (PDAC) are not thoroughly studied. In our study, Western blotting, real-time PCR, and immunohistochemistry were conducted to assess the expression levels of different molecules. Wound-healing, MTS, colony formation, and transwell assays were employed to evaluate the malignant potential of pancreatic cancer cells. We demonstrated that NR5A2 acted as a negative prognostic biomarker in PDAC. NR5A2 silencing inhibited the proliferation and migration abilities of pancreatic cancer cells in vitro and in vivo. While NR5A2 overexpression markedly promoted both events in vitro. We further identified that NR5A2 was transcriptionally upregulated by BRD4 in pancreatic cancer cells and this was confirmed by Chromatin immunoprecipitation (ChIP) and ChIP-qPCR. Besides, transcriptome RNA sequencing (RNA-Seq) was performed to explore the cancer-promoting effects of NR5A2, we found that GDF15 is a component of multiple down-regulated tumor-promoting gene sets after NR5A2 was silenced. Next, we showed that NR5A2 enhanced the malignancy of pancreatic cancer cells by inducing the transcription of GDF15. Collectively, our findings suggest that NR5A2 expression is induced by BRD4. In turn, NR5A2 activates the transcription of GDF15, promoting pancreatic cancer progression. Therefore, NR5A2 and GDF15 could be promising therapeutic targets in pancreatic cancer.


2006 ◽  
Vol 4 (12) ◽  
pp. 42
Author(s):  
D. Kumar ◽  
D. Patacsil ◽  
S. Osayi ◽  
P.C. Gokhale ◽  
M. Verma ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Kim Rouven Liedtke ◽  
Sander Bekeschus ◽  
André Kaeding ◽  
Christine Hackbarth ◽  
Jens-Peter Kuehn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document