Correlation Between Micro-Computed Tomography and Histomorphometry for Assessment of New Bone Formation in a Calvarial Experimental Model

2008 ◽  
Vol 19 (2) ◽  
pp. 446-452 ◽  
Author(s):  
HeyRi Yeom ◽  
Steven Blanchard ◽  
SeokJin Kim ◽  
Susan Zunt ◽  
Tien-Min G. Chu
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Hideki Ueyama ◽  
Yoichi Ohta ◽  
Yuuki Imai ◽  
Akinobu Suzuki ◽  
Ryo Sugama ◽  
...  

Abstract Background Bone morphogenetic proteins (BMPs) induce osteogenesis in various environments. However, when BMPs are used alone in the bone marrow environment, the maintenance of new bone formation is difficult owing to vigorous bone resorption. This is because BMPs stimulate the differentiation of not only osteoblast precursor cells but also osteoclast precursor cells. The present study aimed to induce and maintain new bone formation using the topical co-administration of recombinant human BMP-2 (rh-BMP-2) and zoledronate (ZOL) on beta-tricalcium phosphate (β-TCP) composite. Methods β-TCP columns were impregnated with both rh-BMP-2 (30 µg) and ZOL (5 µg), rh-BMP-2 alone, or ZOL alone, and implanted into the left femur canal of New Zealand white rabbits (n = 56). The implanted β-TCP columns were harvested and evaluated at 3 and 6 weeks after implantation. These harvested β-TCP columns were evaluated radiologically using plane radiograph, and histologically using haematoxylin/eosin (H&E) and Masson’s trichrome (MT) staining. In addition, micro-computed tomography (CT) was performed for qualitative analysis of bone formation in each group (n = 7). Results Tissue sections stained with H&E and MT dyes revealed that new bone formation inside the β-TCP composite was significantly greater in those impregnated with both rh-BMP-2 and ZOL than in those from the other experimental groups at 3 and 6 weeks after implantations (p < 0.05). Micro-CT data also demonstrated that the bone volume and the bone mineral density inside the β-TCP columns were significantly greater in those impregnated with both rh-BMP-2 and ZOL than in those from the other experimental groups at 3 and 6 weeks after implantations (p < 0.05). Conclusions The topical co-administration of both rh-BMP-2 and ZOL on β-TCP composite promoted and maintained newly formed bone structure in the bone marrow environment.


2017 ◽  
Vol 45 (6) ◽  
pp. 1349-1358 ◽  
Author(s):  
Jian-Chun Zong ◽  
Richard Ma ◽  
Hongsheng Wang ◽  
Guang-Ting Cong ◽  
Amir Lebaschi ◽  
...  

Background: Moderate graft pretensioning in anterior cruciate ligament (ACL) reconstruction is paramount to restore knee stability and normalize knee kinematics. However, little is known about the effect of graft pretensioning on graft-to-bone healing after ACL reconstruction. Hypothesis: Moderate graft pretensioning will improve bone formation within the bone tunnel after ACL reconstruction, resulting in superior load to failure. Study Design: Controlled laboratory study. Methods: 67 male Sprague-Dawley rats underwent unilateral ACL reconstruction with a flexor digitorum longus tendon autograft. The graft was subjected to pretensioning forces of 0 N, 5 N, or 10 N. Custom-made external fixators were used for knee immobilization postoperatively. Rats were euthanized for biomechanical load-to-failure testing (n = 45) and micro–computed tomography (μCT) examination (n = 22) at 3 and 6 weeks after surgery. Three regions of each femoral and tibial bone tunnel (aperture, middle, and tunnel exit) were chosen for measurement of tunnel diameter and new bone formation. Results: Biomechanical tests revealed significantly higher load-to-failure in the 5-N graft pretensioned group compared with the 0- and 10-N groups at 3 weeks (8.58 ± 2.67 N vs 3.96 ± 1.83 N and 4.46 ± 2.62 N, respectively) and 6 weeks (16.56 ± 3.50 N vs 10.82 ± 1.97 N and 7.35 ± 2.85 N, respectively) after surgery ( P < .05). The mean bone tunnel diameters at each of the 3 regions were significantly smaller in the 5-N group, at both the femoral and tibial tunnel sites, than in the 0- and 10-N groups ( P < .05). At 3 and 6 weeks postoperatively, the bone mineral density, bone volume fraction, and connectivity density around the aperture and middle regions of the tibial bone tunnels were all significantly higher in the 5-N group compared with the 0- and 10-N groups ( P < .05). In the aperture and middle regions of the femoral bone tunnels, pretensioning at either 5 or 10 N resulted in increased bone formation compared with the nonpretensioned group at 3 weeks postoperatively. No differences were found in bone formation between any of the 3 femoral tunnel regions at 6 weeks. Conclusion: Graft pretensioning can stimulate new bone formation and improve tendon-to-bone tunnel healing after ACL reconstruction. Clinical Relevance: Optimal graft pretensioning force in ACL reconstruction can improve bone tunnel healing. Further study is necessary to understand the mechanisms underlying the effect of graft pretensioning on healing at the bone-tunnel interface.


Bone ◽  
2009 ◽  
Vol 44 ◽  
pp. S245 ◽  
Author(s):  
F.A. Gerhard⁎ ◽  
F.M. Lambers ◽  
G. Kuhn ◽  
R. Muller

2019 ◽  
Vol 20 (23) ◽  
pp. 6042 ◽  
Author(s):  
Anqi Huang ◽  
Yoshitomo Honda ◽  
Peiqi Li ◽  
Tomonari Tanaka ◽  
Shunsuke Baba

Matrix metalloproteinase (MMP)-2 and MMP-9 are well-known gelatinases that disrupt the extracellular matrix, including gelatin. However, the advantages of modulating MMP expression in gelatin-based materials for applications in bone regenerative medicine have not been fully clarified. In this study, we examined the effects of epigallocatechin gallate (EGCG), a major polyphenol catechin isolated from green tea, on MMP expression in gelatin sponges and its association with bone formation. Four gelatin sponges with or without EGCG were prepared and implanted into bone defects for up to 4 weeks. Histological and immunohistological staining were performed. Micro-computed tomography was used to estimate the bone-forming capacity of each sponge. Our results showed that EGCG integration attenuated MMP-2 (70.6%) and -9 expression (69.1%) in the 1 week group, increased residual gelatin (118.7%), and augmented bone formation (101.8%) in the 4 weeks group in critical-sized bone defects of rat calvaria compared with vacuum-heated gelatin sponges without EGCG. Moreover, vacuum-heated gelatin sponges with EGCG showed superior bone formation compared with other sponges. The results indicated that integration of EGCG in gelatin-based materials modulated the production and activity of MMP-2 and -9 in vivo, thereby enhancing bone-forming capacity.


2021 ◽  
Vol 22 (15) ◽  
pp. 8101
Author(s):  
Shiau-Ting Shiu ◽  
Wei-Fang Lee ◽  
Sheng-Min Chen ◽  
Liu-Ting Hao ◽  
Yuan-Ting Hung ◽  
...  

This study evaluated the new bone formation potential of micro–macro biphasic calcium phosphate (MBCP) and Bio-Oss grafting materials with and without dental pulp-derived mesenchymal stem cells (DPSCs) and bone marrow-derived mesenchymal stem cells (BMSCs) in a rabbit calvarial bone defect model. The surface structure of the grafting materials was evaluated using a scanning electron microscope (SEM). The multipotent differentiation characteristics of the DPSCs and BMSCs were assessed. Four circular bone defects were created in the calvarium of 24 rabbits and randomly allocated to eight experimental groups: empty control, MBCP, MBCP+DPSCs, MBCP+BMSCs, Bio-Oss+DPSCs, Bio-Oss+BMSCs, and autogenous bone. A three-dimensional analysis of the new bone formation was performed using micro-computed tomography (micro-CT) and a histological study after 2, 4, and 8 weeks of healing. Homogenously porous structures were observed in both grafting materials. The BMSCs revealed higher osteogenic differentiation capacities, whereas the DPSCs exhibited higher colony-forming units. The micro-CT and histological analysis findings for the new bone formation were consistent. In general, the empty control showed the lowest bone regeneration capacity throughout the experimental period. By contrast, the percentage of new bone formation was the highest in the autogenous bone group after 2 (39.4% ± 4.7%) and 4 weeks (49.7% ± 1.5%) of healing (p < 0.05). MBCP and Bio-Oss could provide osteoconductive support and prevent the collapse of the defect space for new bone formation. In addition, more osteoblastic cells lining the surface of the newly formed bone and bone grafting materials were observed after incorporating the DPSCs and BMSCs. After 8 weeks of healing, the autogenous bone group (54.9% ± 6.1%) showed a higher percentage of new bone formation than the empty control (35.3% ± 0.5%), MBCP (38.3% ± 6.0%), MBCP+DPSC (39.8% ± 5.7%), Bio-Oss (41.3% ± 3.5%), and Bio-Oss+DPSC (42.1% ± 2.7%) groups. Nevertheless, the percentage of new bone formation did not significantly differ between the MBCP+BMSC (47.2% ± 8.3%) and Bio-Oss+BMSC (51.2% ± 9.9%) groups and the autogenous bone group. Our study results demonstrated that autogenous bone is the gold standard. Both the DPSCs and BMSCs enhanced the osteoconductive capacities of MBCP and Bio-Oss. In addition, the efficiency of the BMSCs combined with MBCP and Bio-Oss was comparable to that of the autogenous bone after 8 weeks of healing. These findings provide effective strategies for the improvement of biomaterials and MSC-based bone tissue regeneration.


PLoS ONE ◽  
2017 ◽  
Vol 12 (9) ◽  
pp. e0184835 ◽  
Author(s):  
Zihui Li ◽  
Gisela Kuhn ◽  
Michael Schirmer ◽  
Ralph Müller ◽  
Davide Ruffoni

2020 ◽  
Author(s):  
Yu Jeong Lee ◽  
Moon-Ju Kim ◽  
Sungsin Jo ◽  
So-Hee Jin ◽  
Pu-Reum Park ◽  
...  

Abstract Background: Helminth infections and their components have been shown to have potential to modulate immunity and attenuate immune response. The objective of this study was to evaluate potential protective effects of Clonorchis sinensis–derived protein (CSp) on ankylosing spondylitis (AS).Methods: Cytotoxicity of CSp at different doses was assessed by MTS and flow cytometry before performing experiments. Peripheral blood mononuclear cells (PBMCs) and Synovial fluid mononuclear cells (SFMCs) were obtained from AS patients. Inflammatory cytokine-producing cells were analyzed using flow cytometry. SKG mice were treated with CSp or vehicle. Inflammation and new bone formation were evaluated using immunohistochemistry, positron emission tomography (PET) and micro–computed tomography (CT).Results: Treatment with CSp resulted in no reduced cell viability of PBMCs or SFMCs. In experiments culturing PBMCs and SFMCs, the frequencies of IFN-g and IL-17A producing cells were significantly reduced after CSp treatment. In the SKG mouse model, CSp treatment significantly suppressed arthritis and enthesitis. Micro-CT analysis of hind paw revealed less new bone formation in CSp-treated mice than in vehicle-treated mice. Conclusions: We provide the first evidence demonstrating that CSp can ameliorate clinical signs and cytokine derrangements in AS. In addition, such CSp treatment could reduce new bone formation of AS.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Xinlin Gao ◽  
Yang Meng ◽  
Dingjun Hao ◽  
Hao Liu

Abstract Background Parathyroid hormone, with its anabolic effect on bone formation, has shown excellent outcomes of curing postmenopausal osteoporosis as well as enhancing osseointegration around orthopaedic and stomatologic implants.The purpose of the present study is to test if low-dose intermittent PTH (1–34) treatment could achieve a satisfactory osseointegration in 2-mm peri-implant gaps, as to provide a new idea for improving the stability of such prosthesis, which will be of great clinical value. Methods A custom-made titanium implant was implanted on the calvarium of New Zealand White rabbits. 48 male rabbits were randomly divided into control and PTH group. PTH group received subcutaneous injection of PTH (20 μg/day, 5 days/week). Animals were sacrificed at 4 and 8 weeks after surgery. Quantitative micro-computed tomography, histology and biomechanical pull-out testing were performed to evaluate the gap healing at implantation site. Results Analysis of micro-computed tomography demonstrated that PTH group achieved more new bone formation in 2-mm gaps and on bone-implant interface. Quantitatively, significant differences were observed between two groups in regard to BIC and BV/TV at each time-point. Histological staining revealed that PTH group had a superiority in trabecular number, thickness, separation and better osseointegration compared to control group. As for biomechanical pull-out testing, PTH group also showed significant improvement of ultimate force than control group. Conclusions Low-dose intermittent administration of PTH for 4 and 8 weeks enhances early osseointegration and fixation of orthopedic implants surrounded by a 2-mm gap in terms of increased bone regeneration and mechanical stability. These findings suggest PTH a potential for reducing the postoperative complications of implants by improving bone healing at peri-implant gaps.


Sign in / Sign up

Export Citation Format

Share Document