scholarly journals Microclimate and resource quality determine resource use in a range-expanding herbivore

2021 ◽  
Vol 17 (8) ◽  
pp. 20210175
Author(s):  
James E. Stewart ◽  
Ilya M. D. Maclean ◽  
Alice J. Edney ◽  
Jon Bridle ◽  
Robert J. Wilson

The consequences of climate change for biogeographic range dynamics depend on the spatial scales at which climate influences focal species directly and indirectly via biotic interactions. An overlooked question concerns the extent to which microclimates modify specialist biotic interactions, with emergent properties for communities and range dynamics. Here, we use an in-field experiment to assess egg-laying behaviour of a range-expanding herbivore across a range of natural microclimatic conditions. We show that variation in microclimate, resource condition and individual fecundity can generate differences in egg-laying rates of almost two orders of magnitude in an exemplar species, the brown argus butterfly ( Aricia agestis ). This within-site variation in fecundity dwarfs variation resulting from differences in average ambient temperatures among populations. Although higher temperatures did not reduce female selection for host plants in good condition, the thermal sensitivities of egg-laying behaviours have the potential to accelerate climate-driven range expansion by increasing egg-laying encounters with novel hosts in increasingly suitable microclimates. Understanding the sensitivity of specialist biotic interactions to microclimatic variation is, therefore, critical to predict the outcomes of climate change across species' geographical ranges, and the resilience of ecological communities.

2013 ◽  
Vol 280 (1773) ◽  
pp. 20132495 ◽  
Author(s):  
Michael J. L. Peers ◽  
Daniel H. Thornton ◽  
Dennis L. Murray

Determining the patterns, causes and consequences of character displacement is central to our understanding of competition in ecological communities. However, the majority of competition research has occurred over small spatial extents or focused on fine-scale differences in morphology or behaviour. The effects of competition on broad-scale distribution and niche characteristics of species remain poorly understood but critically important. Using range-wide species distribution models, we evaluated whether Canada lynx ( Lynx canadensis ) or bobcat ( Lynx rufus ) were displaced in regions of sympatry. Consistent with our prediction, we found that lynx niches were less similar to those of bobcat in areas of sympatry versus allopatry, with a stronger reliance on snow cover driving lynx niche divergence in the sympatric zone. By contrast, bobcat increased niche breadth in zones of sympatry, and bobcat niches were equally similar to those of lynx in zones of sympatry and allopatry. These findings suggest that competitively disadvantaged species avoid competition at large scales by restricting their niche to highly suitable conditions, while superior competitors expand the diversity of environments used. Our results indicate that competition can manifest within climatic niche space across species’ ranges, highlighting the importance of biotic interactions occurring at large spatial scales on niche dynamics.


ISRN Ecology ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Tim J. B. Carruthers ◽  
Shawn L. Carter ◽  
Todd R. Lookingbill ◽  
Lisa N. Florkowski ◽  
Jane M. Hawkey ◽  
...  

Progress in achieving desired environmental outcomes needs to be rigorously measured and reported for effective environmental management. Two major challenges in achieving this are, firstly, how to synthesize monitoring data in a meaningful way at appropriate temporal and spatial scales and, secondly, how to present results in a framework that allows for effective communication to resource managers and scientists as well as a broader general audience. This paper presents a habitat framework, developed to assess the natural resource condition of the urban Rock Creek Park (Washington, DC, USA), providing insight on how to improve future assessments. Vegetation and stream GIS layers were used to classify three dominant habitat types, Forest, Wetland, and Artificial-terrestrial. Within Rock Creek Park, Forest habitats were assessed as being in good condition (67% threshold attainment of desired condition), Wetland habitats to be in fair condition (49% attainment), and Artificial-terrestrial habitats to be in degraded condition (26% attainment), resulting in an assessed fair/good condition (60% attainment; weighted by habitat area) for all natural resources in Rock Creek Park. This approach has potential to provide assessment of resource condition for diverse ecosystems and provides a basis for addressing management questions across multiple spatial scales.


2010 ◽  
Vol 365 (1549) ◽  
pp. 2013-2018 ◽  
Author(s):  
José M. Montoya ◽  
Dave Raffaelli

Climate change is real. The wrangling debates are over, and we now need to move onto a predictive ecology that will allow managers of landscapes and policy makers to adapt to the likely changes in biodiversity over the coming decades. There is ample evidence that ecological responses are already occurring at the individual species (population) level. The challenge is how to synthesize the growing list of such observations with a coherent body of theory that will enable us to predict where and when changes will occur, what the consequences might be for the conservation and sustainable use of biodiversity and what we might do practically in order to maintain those systems in as good condition as possible. It is thus necessary to investigate the effects of climate change at the ecosystem level and to consider novel emergent ecosystems composed of new species assemblages arising from differential rates of range shifts of species. Here, we present current knowledge on the effects of climate change on biotic interactions and ecosystem services supply, and summarize the papers included in this volume. We discuss how resilient ecosystems are in the face of the multiple components that characterize climate change, and suggest which current ecological theories may be used as a starting point to predict ecosystem-level effects of climate change.


2021 ◽  
Author(s):  
Franziska M. Willems ◽  
J. F. Scheepens ◽  
Oliver Bossdorf

AbstractSome of the most striking biological responses to climate change are the observed shifts in the timing of life-history events of many organisms. Plants, in particular, often flower earlier in response to climate warming, and herbarium specimens are excellent witnesses of such long-term changes. However, in large-scale analyses the magnitude of phenological shifts may vary geographically, and the data are often clustered, and it is thus necessary to account for spatial correlation to avoid geographical biases and pseudoreplication. Here, we analysed herbarium specimens of 20 spring-flowering forest understory herbs to estimate how their flowering phenology shifted across Europe during the last century. Our analyses show that on average these forest wildflowers now bloom over six days earlier than at the beginning of the last century. These changes were strongly associated with warmer spring temperatures. Plants flowered on average of 3.6 days earlier per 1°C warming. However, in some parts of Europe plants flowered earlier or later than expected. This means, there was significant residual spatial variation in flowering time across Europe, even after accounting for the effects of temperature, precipitation, elevation and year. Including this spatial autocorrelation into our statistical models significantly improved model fit and reduced bias in coefficient estimates. Our study indicates that forest wildflowers in Europe strongly advanced their phenology in response to climate change during the last century, with potential severe consequences for their associated ecological communities. It also demonstrates the power of combining herbarium data with spatial modelling when testing for long-term phenology trends across large spatial scales.


2020 ◽  
Vol 117 (41) ◽  
pp. 25590-25594 ◽  
Author(s):  
J. Ryan Shipley ◽  
Cornelia W. Twining ◽  
Conor C. Taff ◽  
Maren N. Vitousek ◽  
Andrea Flack ◽  
...  

In response to a warming planet with earlier springs, migratory animals are adjusting the timing of essential life stages. Although these adjustments may be essential for keeping pace with resource phenology, they may prove insufficient, as evidenced by population declines in many species. However, even when species can match the tempo of climate change, other consequences may emerge when exposed to novel conditions earlier in the year. Here, using three long-term datasets on bird reproduction, daily insect availability, and weather, we investigated the complex mechanisms affecting reproductive success in an aerial insectivore, the tree swallow (Tachycineta bicolor). By examining breeding records over nearly half a century, we discovered that tree swallows have continuously advanced their egg laying by ∼3 d per decade. However, earlier-hatching offspring are now exposed to inclement weather events twice as often as they were in the 1970s. Our long-term daily insect biomass dataset shows no long-term trends over 25 y but precipitous drops in flying insect numbers on days with low ambient temperatures. Insect availability has a considerable impact on chick survival: Even a single inclement weather event can reduce offspring survival by >50%. Our results highlight the multifaceted threats that climate change poses on migrating species. The decoupling between cold snap occurrence and generally warming spring temperatures can affect reproductive success and threaten long-term persistence of populations. Understanding the exact mechanisms that endanger aerial insectivores is especially timely because this guild is experiencing the steepest and most widespread declines across North America and Europe.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Melinda Boyers ◽  
Francesca Parrini ◽  
Norman Owen-Smith ◽  
Barend F. N. Erasmus ◽  
Robyn S. Hetem

AbstractSouthern Africa is expected to experience increased frequency and intensity of droughts through climate change, which will adversely affect mammalian herbivores. Using bio-loggers, we tested the expectation that wildebeest (Connochaetes taurinus), a grazer with high water-dependence, would be more sensitive to drought conditions than the arid-adapted gemsbok (Oryx gazella gazella). The study, conducted in the Kalahari, encompassed two hot-dry seasons with similar ambient temperatures but differing rainfall patterns during the preceding wet season. In the drier year both ungulates selected similar cooler microclimates, but wildebeest travelled larger distances than gemsbok, presumably in search of water. Body temperatures in both species reached lower daily minimums and higher daily maximums in the drier season but daily fluctuations were wider in wildebeest than in gemsbok. Lower daily minimum body temperatures displayed by wildebeest suggest that wildebeest were under greater nutritional stress than gemsbok. Moving large distances when water is scarce may have compromised the energy balance of the water dependent wildebeest, a trade-off likely to be exacerbated with future climate change.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mulalo M. Muluvhahothe ◽  
Grant S. Joseph ◽  
Colleen L. Seymour ◽  
Thinandavha C. Munyai ◽  
Stefan H. Foord

AbstractHigh-altitude-adapted ectotherms can escape competition from dominant species by tolerating low temperatures at cooler elevations, but climate change is eroding such advantages. Studies evaluating broad-scale impacts of global change for high-altitude organisms often overlook the mitigating role of biotic factors. Yet, at fine spatial-scales, vegetation-associated microclimates provide refuges from climatic extremes. Using one of the largest standardised data sets collected to date, we tested how ant species composition and functional diversity (i.e., the range and value of species traits found within assemblages) respond to large-scale abiotic factors (altitude, aspect), and fine-scale factors (vegetation, soil structure) along an elevational gradient in tropical Africa. Altitude emerged as the principal factor explaining species composition. Analysis of nestedness and turnover components of beta diversity indicated that ant assemblages are specific to each elevation, so species are not filtered out but replaced with new species as elevation increases. Similarity of assemblages over time (assessed using beta decay) did not change significantly at low and mid elevations but declined at the highest elevations. Assemblages also differed between northern and southern mountain aspects, although at highest elevations, composition was restricted to a set of species found on both aspects. Functional diversity was not explained by large scale variables like elevation, but by factors associated with elevation that operate at fine scales (i.e., temperature and habitat structure). Our findings highlight the significance of fine-scale variables in predicting organisms’ responses to changing temperature, offering management possibilities that might dilute climate change impacts, and caution when predicting assemblage responses using climate models, alone.


2019 ◽  
Vol 11 (4) ◽  
pp. 1163 ◽  
Author(s):  
Melissa Bedinger ◽  
Lindsay Beevers ◽  
Lila Collet ◽  
Annie Visser

Climate change is a product of the Anthropocene, and the human–nature system in which we live. Effective climate change adaptation requires that we acknowledge this complexity. Theoretical literature on sustainability transitions has highlighted this and called for deeper acknowledgment of systems complexity in our research practices. Are we heeding these calls for ‘systems’ research? We used hydrohazards (floods and droughts) as an example research area to explore this question. We first distilled existing challenges for complex human–nature systems into six central concepts: Uncertainty, multiple spatial scales, multiple time scales, multimethod approaches, human–nature dimensions, and interactions. We then performed a systematic assessment of 737 articles to examine patterns in what methods are used and how these cover the complexity concepts. In general, results showed that many papers do not reference any of the complexity concepts, and no existing approach addresses all six. We used the detailed results to guide advancement from theoretical calls for action to specific next steps. Future research priorities include the development of methods for consideration of multiple hazards; for the study of interactions, particularly in linking the short- to medium-term time scales; to reduce data-intensivity; and to better integrate bottom–up and top–down approaches in a way that connects local context with higher-level decision-making. Overall this paper serves to build a shared conceptualisation of human–nature system complexity, map current practice, and navigate a complexity-smart trajectory for future research.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. Huntley ◽  
M. Aubert ◽  
A. A. Oktaviana ◽  
R. Lebe ◽  
B. Hakim ◽  
...  

AbstractThe equatorial tropics house some of the earliest rock art yet known, and it is weathering at an alarming rate. Here we present evidence for haloclasty (salt crystallisation) from Pleistocene-aged rock art panels at 11 sites in the Maros-Pangkep limestone karsts of southern Sulawesi. We show how quickly rock art panels have degraded in recent decades, contending that climate-catalysed salt efflorescence is responsible for increasing exfoliation of the limestone cave surfaces that house the ~ 45 to 20-thousand-year-old paintings. These artworks are located in the world’s most atmospherically dynamic region, the Australasian monsoon domain. The rising frequency and severity of El Niño-induced droughts from anthropogenic climate change (that is, higher ambient temperatures and more consecutive dry days), combined with seasonal moisture injected via monsoonal rains retained as standing water in the rice fields and aquaculture ponds of the region, increasingly provide ideal conditions for evaporation and haloclasty, accelerating rock art deterioration.


Sign in / Sign up

Export Citation Format

Share Document