scholarly journals DNA-based species detection capabilities using laser transmission spectroscopy

2013 ◽  
Vol 10 (78) ◽  
pp. 20120637 ◽  
Author(s):  
A. R. Mahon ◽  
M. A. Barnes ◽  
F. Li ◽  
S. P. Egan ◽  
C. E. Tanner ◽  
...  

Early detection of invasive species is critical for effective biocontrol to mitigate potential ecological and economic damage. Laser transmission spectroscopy (LTS) is a powerful solution offering real-time, DNA-based species detection in the field. LTS can measure the size, shape and number of nanoparticles in a solution and was used here to detect size shifts resulting from hybridization of the polymerase chain reaction product to nanoparticles functionalized with species-specific oligonucleotide probes or with the species-specific oligonucleotide probes alone. We carried out a series of DNA detection experiments using the invasive freshwater quagga mussel ( Dreissena bugensis ) to evaluate the capability of the LTS platform for invasive species detection. Specifically, we tested LTS sensitivity to (i) DNA concentrations of a single target species, (ii) the presence of a target species within a mixed sample of other closely related species, (iii) species-specific functionalized nanoparticles versus species-specific oligonucleotide probes alone, and (iv) amplified DNA fragments versus unamplified genomic DNA. We demonstrate that LTS is a highly sensitive technique for rapid target species detection, with detection limits in the picomolar range, capable of successful identification in multispecies samples containing target and non-target species DNA. These results indicate that the LTS DNA detection platform will be useful for field application of target species. Additionally, we find that LTS detection is effective with species-specific oligonucleotide tags alone or when they are attached to polystyrene nanobeads and with both amplified and unamplified DNA, indicating that the technique may also have versatility for broader applications.

2013 ◽  
Vol 6 (6) ◽  
pp. 402-409 ◽  
Author(s):  
Scott P. Egan ◽  
Matthew A. Barnes ◽  
Ching-Ting Hwang ◽  
Andrew R. Mahon ◽  
Jeffery L. Feder ◽  
...  

EDIS ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 7
Author(s):  
Demian F. Gomez ◽  
Jiri Hulcr ◽  
Daniel Carrillo

Invasive species, those that are nonnative and cause economic damage, are one of the main threats to ecosystems around the world. Ambrosia beetles are some of the most common invasive insects. Currently, severe economic impacts have been increasingly reported for all the invasive shot hole borers in South Africa, California, Israel, and throughout Asia. This 7-page fact sheet written by Demian F. Gomez, Jiri Hulcr, and Daniel Carrillo and published by the School of Forest Resources and Conservation describes shot hole borers and their biology and hosts and lists some strategies for prevention and control of these pests. http://edis.ifas.ufl.edu/fr422


2012 ◽  
Vol 84 (4) ◽  
pp. 1065-1071 ◽  
Author(s):  
Patricio J. Pereyra ◽  
Gustavo B. Rossini ◽  
Gustavo Darrigran

The golden mussel Limnoperna fortunei (Dunker 1857) is one of the most distributed Nuisance Invasive Species (NIS) in South America, and a threat of great concern for the industry of the area. In this study, we carried out toxicity tests made with a Neem's oil solution with L. fortunei larvae and benthonic adults (7, 13 and 19 ± 1 mm). Tests with non-target species (Daphnia magna, Lactuca sativa and Cnesterodon decemmculatus) were also made with the aim to evaluate the potential toxicity of the Neem's solution in the environment. The LC100 of Neem's solution obtained for larvae was 500 µl/L, a value much higher than the one obtained for D. magna and C. decemmaculatus. Thus, we recommend that it should not be used in open waters. However, since the adults were killed in 72 h and the larvae in 24 h, this product can be used in closed systems, in man-made facilities.


2005 ◽  
Vol 68 (6) ◽  
pp. 1217-1221 ◽  
Author(s):  
PAVEL KRCMAR ◽  
EVA RENCOVA

A sensitive and rapid method for the quantitative detection of bovine-, ovine-, swine-, and chicken-specific mitochondrial DNA sequences based on real-time PCR has been developed. The specificity of the primers and probes for real-time PCR has been tested using DNA samples of other vertebrate species that may also be present in rendered products. The quantitative detection was performed with dual-labeled probes (TaqMan) using absolute quantification with external standards of single species meat-and-bone meals. This method facilitates the detection of 0.01% of the target species–derived material in concentrate feed mixtures and fish meals.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0237894
Author(s):  
Amy E. Kendig ◽  
Vida J. Svahnström ◽  
Ashish Adhikari ◽  
Philip F. Harmon ◽  
S. Luke Flory

Infectious diseases and invasive species can be strong drivers of biological systems that may interact to shift plant community composition. For example, disease can modify resource competition between invasive and native species. Invasive species tend to interact with a diversity of native species, and it is unclear how native species differ in response to disease-mediated competition with invasive species. Here, we quantified the biomass responses of three native North American grass species (Dichanthelium clandestinum, Elymus virginicus, and Eragrostis spectabilis) to disease-mediated competition with the non-native invasive grass Microstegium vimineum. The foliar fungal pathogen Bipolaris gigantea has recently emerged in Microstegium populations, causing a leaf spot disease that reduces Microstegium biomass and seed production. In a greenhouse experiment, we examined the effects of B. gigantea inoculation on two components of competitive ability for each native species: growth in the absence of competition and biomass responses to increasing densities of Microstegium. Bipolaris gigantea inoculation affected each of the three native species in unique ways, by increasing (Dichanthelium), decreasing (Elymus), or not changing (Eragrostis) their growth in the absence of competition relative to mock inoculation. Bipolaris gigantea inoculation did not, however, affect Microstegium biomass or mediate the effect of Microstegium density on native plant biomass. Thus, B. gigantea had species-specific effects on native plant competition with Microstegium through species-specific biomass responses to B. gigantea inoculation, but not through modified responses to Microstegium density. Our results suggest that disease may uniquely modify competitive interactions between invasive and native plants for different native plant species.


Author(s):  
Robert G. Haight ◽  
Amy C. Kinsley ◽  
Szu-Yu Kao ◽  
Denys Yemshanov ◽  
Nicholas B. D. Phelps

AbstractThe accidental spread of aquatic invasive species (AIS) by recreational boaters is a major concern of state and county environmental planners in the USA. While programs for watercraft inspection to educate boaters and slow AIS spread are common practice, large numbers of boats and waterbodies, together with limited budgets, make program design difficult. To facilitate program design, we developed an integer programming model for allocation of scarce inspection resources among lakes. Our model uses species-specific infestation status of lakes and estimates of boat movement between lakes. The objective is to select lakes for inspection stations to maximize the number of risky boats inspected, where risky boats are ones that move from infested to uninfested lakes. We apply our model in Stearns County in central Minnesota, USA, to prioritize lakes for inspection stations and evaluate alternative management objectives. With an objective of protecting uninfested lakes within and outside Stearns County, the optimal policy is to locate stations at infested lakes having the most boats departing for uninfested lakes inside and outside the county. With an objective of protecting only Stearns County lakes, the optimal policy is to locate stations at both infested and uninfested lakes having the riskiest boats arriving from within and outside the county and departing to in-county lakes. The tradeoff between these objectives is significant.


Author(s):  
Timothy Flynn ◽  
Hady Salloum ◽  
Helen Hull-Sanders ◽  
Alexander Sedunov ◽  
Nikolay Sedunov ◽  
...  

2012 ◽  
Vol 60 (4) ◽  
pp. 235 ◽  
Author(s):  
Kate D. L. Umbers ◽  
Michael D. Jennions ◽  
J. Scott Keogh

We isolated 25 new polymorphic microsatellite markers from the eastern mosquitofish, Gambusia holbrooki. Initially, 454 shotgun sequencing was used to identify 1187 loci for which primers could be designed. Of these 1187, we trialled 48 in the target species, 40 of which amplified a product of expected size. Subsequently, those 40 loci were screened for variation in 48 individuals from a single population in Canberra, Australia. Twenty loci were in Hardy–Weinberg equilibrium and polymorphic, with observed heterozygosity ranging from 0.04 to 0.72 (mean: 0.45 ± 0.18) and the number of alleles per locus ranged from 2 to 5 (mean: 3.20 ± 1.05). These loci will be useful in understanding genetic variation, paternity analysis and in managing this species across both its native and invasive range.


Sign in / Sign up

Export Citation Format

Share Document