scholarly journals Surface periarterial spaces of the mouse brain are open, not porous

2020 ◽  
Vol 17 (172) ◽  
pp. 20200593 ◽  
Author(s):  
Fatima Min Rivas ◽  
Jia Liu ◽  
Benjamin C. Martell ◽  
Ting Du ◽  
Humberto Mestre ◽  
...  

Fluid-dynamic models of the flow of cerebrospinal fluid in the brain have treated the perivascular spaces either as open (without internal solid obstacles) or as porous. Here, we present experimental evidence that pial (surface) periarterial spaces in mice are essentially open. (1) Paths of particles in the perivascular spaces are smooth, as expected for viscous flow in an open vessel, not diffusive, as expected for flow in a porous medium. (2) Time-averaged velocity profiles in periarterial spaces agree closely with theoretical profiles for viscous flow in realistic models, but not with the nearly uniform profiles expected for porous medium. Because these spaces are open, they have much lower hydraulic resistance than if they were porous. To demonstrate, we compute hydraulic resistance for realistic periarterial spaces, both open and porous, and show that the resistance of the porous spaces are greater, typically by a factor of a hundred or more. The open nature of these periarterial spaces allows significantly greater flow rates and more efficient removal of metabolic waste products.

2019 ◽  
Vol 16 (159) ◽  
pp. 20190572 ◽  
Author(s):  
John H. Thomas

The flow of cerebrospinal fluid along perivascular spaces (PVSs) is an important part of the brain’s system for delivering nutrients and eliminating metabolic waste products (such as amyloid-β); it also offers a pathway for the delivery of therapeutic drugs to the brain parenchyma. Recent experimental results have resolved several important questions about this flow, setting the stage for advances in our understanding of its fluid dynamics. This review summarizes the new experimental evidence and provides a critical evaluation of previous fluid-dynamic models of flows in PVSs. The review also discusses some basic fluid-dynamic concepts relevant to these flows, including the combined effects of diffusion and advection in clearing solutes from the brain.


2019 ◽  
Author(s):  
Jeffrey Tithof ◽  
Douglas H. Kelley ◽  
Humberto Mestre ◽  
Maiken Nedergaard ◽  
John H. Thomas

AbstractBackgroundPerivascular spaces (PVSs) are annular channels that surround blood vessels and carry cerebrospinal fluid through the brain, sweeping away metabolic waste. In vivo observations reveal that they are not concentric, circular annuli, however: the outer boundaries are often oblate, and the blood vessels that form the inner boundaries are often offset from the central axis.MethodsWe model PVS cross-sections as circles surrounded by ellipses and vary the radii of the circles, major and minor axes of the ellipses, and two-dimensional eccentricities of the circles with respect to the ellipses. For each shape, we solve the governing Navier-Stokes equation to determine the velocity profile for steady laminar flow and then compute the corresponding hydraulic resistance.ResultsWe find that the observed shapes of PVSs have lower hydraulic resistance than concentric, circular annuli of the same size, and therefore allow faster, more efficient flow of cerebrospinal fluid. We find that the minimum hydraulic resistance (and therefore maximum flow rate) for a given PVS cross-sectional area occurs when the ellipse is elongated and intersects the circle, dividing the PVS into two lobes, as is common around pial arteries. We also find that if both the inner and outer boundaries are nearly circular, the minimum hydraulic resistance occurs when the eccentricity is large, as is common around penetrating arteries.ConclusionsThe concentric circular annulus assumed in recent studies is not a good model of the shape of actual PVSs observed in vivo, and it greatly overestimates the hydraulic resistance of the PVS. Our parameterization can be used to incorporate more realistic resistances into hydraulic network models of flow of cerebrospinal fluid in the brain. Our results demonstrate that actual shapes observed in vivo are nearly optimal, in the sense of offering the least hydraulic resistance. This optimization may well represent an evolutionary adaptation that maximizes clearance of metabolic waste from the brain.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chandrasekar Pichaimuthu ◽  
Ganesh Swaminathan

Purpose The Purpose of this study to examine the magneto hydrodynamics (MHD) using the analytical and numerical tool. In recent years, MHD growing tremendously due to the presence of multidisciplinary application in solving the tedious problems in the viscous flow. Design/methodology/approach The flows between the parallel plates under the steady inclined magneto hydrodynamic force were studied under the presence of different hall current and pressure gradient. The system was designed with the Darcian porous medium subjected to the incompressible flow. To analyse the flow reactions through stationary parallel plates, the governing equations were used using the integral transformation. Findings The velocity of the flows depends on the Hall parameter. As the intensity of the magnetic field increases the velocity of the flow is affected significantly. On the other hand, the radiation parameters also affect the flow of any medium through the porous medium. Practical implications Implementation of the Laplace and Fourier transform increases the reliability of the obtained results and further decreases the uncertainty during the measurement of the velocity of the flow without any restraints. Originality/value From the evident results, it is clear that the proposed MHD model can be applied to several operations of the fluid dynamic models. Further, the application of this technique will decrease the uncertainty in the results compared to the conventional computational models and other finite element and difference approaches.


2014 ◽  
Vol 29 (2) ◽  
pp. 322-331 ◽  
Author(s):  
Anders Karlström ◽  
Karin Eriksson

Abstract This is the first in a series of papers presenting the development of a comprehensive multiscale model with focus on fiber energy efficiency in thermo mechanical pulp processes. The fiber energy efficiency is related to the defibration and fibrillation work obtained when fibers and fiber bundles interact with the refining bars. The fiber energy efficiency differs from the total refining energy efficiency which includes the thermodynamical work as well. Extracting defibration and fibrillation work along the radius in the refining zone gives information valuable for fiber development studies.Models for this process must handle physical variables as well as machine specific parameters at different scales. To span the material and energy balances, spatial measurements from the refining zone must be available. In this paper, measurements of temperature profile and plate gaps from a full-scale CD-refiner are considered as model inputs together with a number of process variables. This enables the distributed consistency in the refining zone as well as the split of the total work between the flat zone and the CD-zone to be derived. As the temperature profile and the plate gap are available in the flat zone and the CD-zone at different process conditions it is also shown that the distributed pulp dynamic viscosity can be obtained. This is normally unknown in refining processes but certainly useful for all fluid dynamic models describing the bar-to-fiber interactions. Finally, it is shown that the inclusion of the machine parameters will be vital to get good estimates of the refining conditions and especially the split between the thermodynamical work and the defibration/fibrillation work.


2021 ◽  
pp. 073490412199344
Author(s):  
Wolfram Jahn ◽  
Frane Sazunic ◽  
Carlos Sing-Long

Synthesising data from fire scenarios using fire simulations requires iterative running of these simulations. For real-time synthesising, faster-than-real-time simulations are thus necessary. In this article, different model types are assessed according to their complexity to determine the trade-off between the accuracy of the output and the required computing time. A threshold grid size for real-time computational fluid dynamic simulations is identified, and the implications of simplifying existing field fire models by turning off sub-models are assessed. In addition, a temperature correction for two zone models based on the conservation of energy of the hot layer is introduced, to account for spatial variations of temperature in the near field of the fire. The main conclusions are that real-time fire simulations with spatial resolution are possible and that it is not necessary to solve all fine-scale physics to reproduce temperature measurements accurately. There remains, however, a gap in performance between computational fluid dynamic models and zone models that must be explored to achieve faster-than-real-time fire simulations.


2013 ◽  
Vol 73 (4) ◽  
pp. 1327-1346 ◽  
Author(s):  
Abdelghani Bellouquid ◽  
Juan Calvo ◽  
Juan Nieto ◽  
Juan Soler

Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000013077
Author(s):  
Corey W Bown ◽  
Roxana O Carare ◽  
Matthew S Schrag ◽  
Angela L Jefferson

Perivascular spaces (PVS) are fluid filled compartments that are part of the cerebral blood vessel wall and represent the conduit for fluid transport in and out of the brain. PVS are considered pathologic when sufficiently enlarged to be visible on magnetic resonance imaging. Recent studies have demonstrated that enlarged PVS (ePVS) may have clinical consequences related to cognition. Emerging literature points to arterial stiffening and abnormal protein aggregation in vessel walls as two possible mechanisms that drive ePVS formation. In this review, we describe the clinical consequences, anatomy, fluid dynamics, physiology, risk factors, and in vivo quantification methods of ePVS. Given competing views of PVS physiology, we detail the two most prominent theoretical views and review ePVS associations with other common small vessel disease markers. As ePVS are a marker of small vessel disease and ePVS burden is higher in Alzheimer’s disease, a comprehensive understanding about ePVS is essential in developing prevention and treatment strategies.


2021 ◽  
pp. 86-89

Perivascular spaces; also known as the Virchow-Robin Spaces, they are pleurally lined, interstitial fluid-filled areas that surround certain blood vessels in various organs, especially the perforating arteries in the brain, with an immunological function. Dilated perivascular spaces are divided into three types. The first of these is on the lenticulostriate artery, the second is in the cortex following the path of the medullary artery, and the third is in the midbrain. Perivascular spaces can be detected as areas of dilatation on MR images. Although a limited number of perivascular spaces can be seen in a normal brain, the increase in the number of these spaces has been associated with the incidence of various neurodegenerative diseases. Different theories have been suggested about the tendency of the perivascular spaces to expand. Current theories include mechanical trauma due to cerebrospinal fluid pulsing, elongation of penetrating blood vessels, unusual vascular permeability, and increased fluid exudation. In addition, the brain tissue atrophy that occurs with aging; It is thought to contribute to the widening of perivascular spaces by causing shrinkage of arteries, altered arterial wall permeability, obstruction of lymphatic drainage pathways and vascular demyelination. It is assumed that the clinical significance of the dilation tendencies of the perivascular spaces is based on shape change rather than size. These spaces have been mostly observed in brain regions such as corpus callosum, cingulate gyrus, dentate nucleus, substantia nigra and various arterial basins including lenticulostriate artery and mesencephalothalamic artery. In conclusion, when sections are taken on MR imaging, it is possible that perivascular spaces may be confused with microvascular diseases and some neurodegenerative changes. In addition, perivascular spaces can be seen without pathological significance. Therefore, it would be appropriate to investigate the etiological relationship by evaluating the radiological findings and clinical picture together.


2021 ◽  
Vol 4 (4) ◽  
pp. 551-565
Author(s):  
Ryan D Bitar ◽  
Jorge L Torres-Garza ◽  
Russel J Reiter ◽  
William T Phillips

The central nervous system was thought to lack a lymphatic drainage until the recent discovery of the neural glymphatic system.  This highly specialized waste disposal network includes classical lymphatic vessels in the dura that absorb fluid and metabolic by-products and debris from the underlying cerebrospinal fluid (CSF) in the subarachnoid space. The subarachnoid space is continuous with the Virchow-Robin peri-arterial and peri-vascular spaces which surround the arteries and veins that penetrate into the neural tissue, respectively.  The dural lymphatic vessels exit the cranial vault via an anterior and a posterior route and eventually drain into the deep cervical lymph nodes. Aided by the presence of aquaporin 4 on the perivascular endfeet of astrocytes, nutrients and other molecules enter the brain from peri-arterial spaces and form interstitial fluid (ISF) that baths neurons and glia before being released into peri-venous spaces.  Melatonin, a pineal-derived secretory product which is in much higher concentration in the CSF than in the blood, is believed to follow this route and to clear waste products such as amyloid-β from the interstitial space. The clearance of amyloid-β reportedly occurs especially during slow wave sleep which happens concurrently with highest CSF levels of melatonin.  Experimentally, exogenously-administered melatonin defers amyloid-β buildup in the brain of animals and causes its accumulation in the cervical lymph nodes. Clinically, with increased age CSF melatonin levels decrease markedly, co-incident with neurodegeneration and dementia.  Collectively, these findings suggest a potential association between the loss of melatonin, decreased glymphatic drainage and neurocognitive decline in the elderly.


Sign in / Sign up

Export Citation Format

Share Document