scholarly journals Biosynthesis and biology of mammalian GPI-anchored proteins

Open Biology ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 190290 ◽  
Author(s):  
Taroh Kinoshita

At least 150 human proteins are glycosylphosphatidylinositol-anchored proteins (GPI-APs). The protein moiety of GPI-APs lacking transmembrane domains is anchored to the plasma membrane with GPI covalently attached to the C-terminus. The GPI consists of the conserved core glycan, phosphatidylinositol and glycan side chains. The entire GPI-AP is anchored to the outer leaflet of the lipid bilayer by insertion of fatty chains of phosphatidylinositol. Because of GPI-dependent membrane anchoring, GPI-APs have some unique characteristics. The most prominent feature of GPI-APs is their association with membrane microdomains or membrane rafts. In the polarized cells such as epithelial cells, many GPI-APs are exclusively expressed in the apical surfaces, whereas some GPI-APs are preferentially expressed in the basolateral surfaces. Several GPI-APs act as transcytotic transporters carrying their ligands from one compartment to another. Some GPI-APs are shed from the membrane after cleavage within the GPI by a GPI-specific phospholipase or a glycosidase. In this review, I will summarize the current understanding of GPI-AP biosynthesis in mammalian cells and discuss examples of GPI-dependent functions of mammalian GPI-APs.

2017 ◽  
Author(s):  
K. C. Courtney ◽  
W Pezeshkian ◽  
R Raghupathy ◽  
C Zhang ◽  
A Darbyson ◽  
...  

AbstractMammalian cell sphingolipids, primarily with C24 and C16 acyl chains, reside in the outer leaflet of the plasma membrane. Curiously, little is known how C24 sphingolipids impact cholesterol and membrane microdomains. Here, we generated giant unilamellar vesicles and live mammalian cells with C24 or C16 sphingomyelin exclusively in the outer leaflet and compared microdomain formation. In giant unilamellar vesicles, we observed that asymmetrically placed C24 sphingomyelin suppresses microdomains. Conversely, C16 sphingomyelin facilitates microdomains. Replacing endogenous sphingolipids with C24 or C16 sphingomyelin in live HeLa cells has a similar impact on microdomains, characterized by FRET between GPI-anchored proteins: C24, but not C16, sphingomyelin suppresses submicron domains in the plasma membrane. Molecular dynamics simulations indicated that, when in the outer leaflet, the acyl chain of C24 sphingomyelin interdigitates into the opposing leaflet, thereby favouring cholesterol in the inner leaflet. We indeed found that cholesterol prefers the inner over the outer leaflet of asymmetric unilamellar vesicles (80/20) when C24 sphingomyelin is in the outer leaflet. However, when C16 sphingomyelin is in the outer leaflet, cholesterol is evenly partitioned between leaflets (50/50). Interestingly, when a mixture of C24/C16 sphingomyelin is in the outer leaflet of unilamellar vesicles, cholesterol still prefers the inner leaflet (80/20). Indeed, in human erythrocyte plasma membrane, where a mixture of C24 and C16 sphingolipids are naturally in the outer leaflet, cholesterol prefers the cytoplasmic leaflet (80/20). Therefore, C24 sphingomyelin uniquely interacts with cholesterol and governs the lateral organization in asymmetric membranes, including the plasma membrane, potentially by generating cholesterol asymmetry.Statement of SignificanceThe plasma membrane bilayer of mammalian cells has distinct phospholipids between the outer and inner leaflet, with sphingolipids exclusively in the outer leaflet. A large portion of mammalian sphingolipids have very long acyl chains (C24). Little is known how C24 sphingolipids function in the outer leaflet. Mutations in the ceramide synthase 2 gene is found to decrease C24. This severely perturbs homeostasis in mice and humans. Here, we investigated unilamellar vesicles and mammalian cells with C24 sphingomyelin exclusively in the outer leaflet. We provide evidence that outer leaflet C24 sphingomyelin suppresses microdomains in model membranes and live cells by partitioning cholesterol into the inner leaflet. We propose that C24 sphingolipids are critical to the function of the plasma membrane.


2020 ◽  
Vol 48 (3) ◽  
pp. 1129-1138 ◽  
Author(s):  
Yi-Shi Liu ◽  
Morihisa Fujita

Glycosylphosphatidylinositol (GPI) is a glycolipid added to the C-terminus of a large variety of proteins in eukaryotes, thereby anchoring these proteins to the cell surface. More than 150 different human proteins are modified with GPI, and GPI-anchored proteins (GPI-APs) play critical roles in embryogenesis, neurogenesis, immunity, and fertilization. GPI-APs are biosynthesized in the endoplasmic reticulum (ER) and transported to the plasma membrane via the Golgi apparatus. During transport, GPI-APs undergo structural remodeling that is important for the efficient folding and sorting of GPI-APs. Asparagine-linked glycan-dependent folding and deacylation by PGAP1 work together to ensure that correctly folded GPI-APs are transported from the ER to the Golgi. Remodeling of the GPI lipid moiety is critical for the association of GPI-APs with lipid rafts. On the cell surface, certain GPI-APs are cleaved by GPI cleavage enzymes and released from the membrane, a key event in processes such as spermatogenesis and neurogenesis. In this review, we discuss the enzymes involved in GPI-AP biosynthesis and the fate of GPI-APs in mammalian cells, with a focus on the assembly, folding, degradation, and cleavage of GPI-APs.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3317
Author(s):  
Eric Moeglin ◽  
Dominique Desplancq ◽  
Audrey Stoessel ◽  
Christian Massute ◽  
Jeremy Ranniger ◽  
...  

Histone H2AX phosphorylated at serine 139 (γ-H2AX) is a hallmark of DNA damage, signaling the presence of DNA double-strand breaks and global replication stress in mammalian cells. While γ-H2AX can be visualized with antibodies in fixed cells, its detection in living cells was so far not possible. Here, we used immune libraries and phage display to isolate nanobodies that specifically bind to γ-H2AX. We solved the crystal structure of the most soluble nanobody in complex with the phosphopeptide corresponding to the C-terminus of γ-H2AX and show the atomic constituents behind its specificity. We engineered a bivalent version of this nanobody and show that bivalency is essential to quantitatively visualize γ-H2AX in fixed drug-treated cells. After labelling with a chemical fluorophore, we were able to detect γ-H2AX in a single-step assay with the same sensitivity as with validated antibodies. Moreover, we produced fluorescent nanobody-dTomato fusion proteins and applied a transduction strategy to visualize with precision γ-H2AX foci present in intact living cells following drug treatment. Together, this novel tool allows performing fast screenings of genotoxic drugs and enables to study the dynamics of this particular chromatin modification in individual cancer cells under a variety of conditions.


2007 ◽  
Vol 403 (2) ◽  
pp. 313-322 ◽  
Author(s):  
Gonzalo P. Solis ◽  
Maja Hoegg ◽  
Christina Munderloh ◽  
Yvonne Schrock ◽  
Edward Malaga-Trillo ◽  
...  

Reggie-1 and -2 proteins (flotillin-2 and -1 respectively) form their own type of non-caveolar membrane microdomains, which are involved in important cellular processes such as T-cell activation, phagocytosis and signalling mediated by the cellular prion protein and insulin; this is consistent with the notion that reggie microdomains promote protein assemblies and signalling. While it is generally known that membrane microdomains contain large multiprotein assemblies, the exact organization of reggie microdomains remains elusive. Using chemical cross-linking approaches, we have demonstrated that reggie complexes are composed of homo- and hetero-tetramers of reggie-1 and -2. Moreover, native reggie oligomers are indeed quite stable, since non-cross-linked tetramers are resistant to 8 M urea treatment. We also show that oligomerization requires the C-terminal but not the N-terminal halves of reggie-1 and -2. Using deletion constructs, we analysed the functional relevance of the three predicted coiled-coil stretches present in the C-terminus of reggie-1. We confirmed experimentally that reggie-1 tetramerization is dependent on the presence of coiled-coil 2 and, partially, of coiled-coil 1. Furthermore, since depletion of reggie-1 by siRNA (small interfering RNA) silencing induces proteasomal degradation of reggie-2, we conclude that the protein stability of reggie-2 depends on the presence of reggie-1. Our data indicate that the basic structural units of reggie microdomains are reggie homo- and hetero-tetramers, which are dependent on the presence of reggie-1.


Genetics ◽  
2003 ◽  
Vol 165 (2) ◽  
pp. 707-720
Author(s):  
Jose Oca-Cossio ◽  
Lesley Kenyon ◽  
Huiling Hao ◽  
Carlos T Moraes

Abstract The possibility of expressing mitochondrial DNA-coded genes in the nuclear-cytoplasmic compartment provides an attractive system for genetic treatment of mitochondrial disorders associated with mitochondrial DNA mutations. In theory, by recoding mitochondrial genes to adapt them to the universal genetic code and by adding a DNA sequence coding for a mitochondrial-targeting sequence, one could achieve correct localization of the gene product. Such transfer has occurred in nature, and certain species of algae and plants express a number of polypeptides that are commonly coded by mtDNA in the nuclear-cytoplasmic compartment. In the present study, allotopic expression of three different mtDNA-coded polypeptides (ATPase8, apocytochrome b, and ND4) into COS-7 and HeLa cells was analyzed. Among these, only ATPase8 was correctly expressed and localized to mitochondria. The full-length, as well as truncated forms, of apocytochrome b and ND4 decorated the periphery of mitochondria, but also aggregated in fiber-like structures containing tubulin and in some cases also vimentin. The addition of a hydrophilic tail (EGFP) to the C terminus of these polypeptides did not change their localization. Overexpression of molecular chaperones also did not have a significant effect in preventing aggregations. Allotopic expression of apocytochrome b and ND4 induced a loss of mitochondrial membrane potential in transfected cells, which can lead to cell death. Our observations suggest that only a subset of mitochondrial genes can be replaced allotopically. Analyses of the hydrophobic patterns of different polypeptides suggest that hydrophobicity of the N-terminal segment is the main determinant for the importability of peptides into mammalian mitochondria.


1999 ◽  
Vol 10 (5) ◽  
pp. 1381-1394 ◽  
Author(s):  
Carlos Labriola ◽  
Juan J. Cazzulo ◽  
Armando J. Parodi

Trypanosoma cruzi is a protozoan parasite that belongs to an early branch in evolution. Although it lacks several features of the pathway of protein N-glycosylation and oligosaccharide processing present in the endoplasmic reticulum of higher eukaryotes, it displays UDP-Glc:glycoprotein glucosyltransferase and glucosidase II activities. It is herewith reported that this protozoan also expresses a calreticulin-like molecule, the third component of the quality control of glycoprotein folding. No calnexin-encoding gene was detected. Recombinant T. cruzi calreticulin specifically recognized free monoglucosylated high-mannose-type oligosaccharides. Addition of anti-calreticulin serum to extracts obtained from cells pulse–chased with [35S]Met plus [35S]Cys immunoprecipitated two proteins that were identified as calreticulin and the lysosomal proteinase cruzipain (a major soluble glycoprotein). The latter but not the former protein disappeared from immunoprecipitates upon chasing cells. Contrary to what happens in mammalian cells, addition of the glucosidase II inhibitor 1-deoxynojirimycin promoted calreticulin–cruzipain interaction. This result is consistent with the known pathway of proteinN-glycosylation and oligosaccharide processing occurring in T. cruzi. A treatment of the calreticulin-cruzipain complexes with endo-β-N-acetylglucosaminidase H either before or after addition of anti-calreticulin serum completely disrupted calreticulin–cruzipain interaction. In addition, mature monoglucosylated but not unglucosylated cruzipain isolated from lysosomes was found to interact with recombinant calreticulin. It was concluded that the quality control of glycoprotein folding appeared early in evolution, and that T. cruzi calreticulin binds monoglucosylated oligosaccharides but not the protein moiety of cruzipain. Furthermore, evidence is presented indicating that glucosyltransferase glucosylated cruzipain at its last folding stages.


2021 ◽  
Vol 8 ◽  
Author(s):  
Sabine Panzer ◽  
Chong Zhang ◽  
Tilen Konte ◽  
Celine Bräuer ◽  
Anne Diemar ◽  
...  

Aureobasidium pullulans is a black fungus that can adapt to various stressful conditions like hypersaline, acidic, and alkaline environments. The genome of A. pullulans exhibits three genes coding for putative opsins ApOps1, ApOps2, and ApOps3. We heterologously expressed these genes in mammalian cells and Xenopus oocytes. Localization in the plasma membrane was greatly improved by introducing additional membrane trafficking signals at the N-terminus and the C-terminus. In patch-clamp and two-electrode-voltage clamp experiments, all three proteins showed proton pump activity with maximal activity in green light. Among them, ApOps2 exhibited the most pronounced proton pump activity with current amplitudes occasionally extending 10 pA/pF at 0 mV. Proton pump activity was further supported in the presence of extracellular weak organic acids. Furthermore, we used site-directed mutagenesis to reshape protein functions and thereby implemented light-gated proton channels. We discuss the difference to other well-known proton pumps and the potential of these rhodopsins for optogenetic applications.


1998 ◽  
Vol 141 (3) ◽  
pp. 663-674 ◽  
Author(s):  
Steven M. Murphy ◽  
Lenore Urbani ◽  
Tim Stearns

γ-Tubulin is a universal component of microtubule organizing centers where it is believed to play an important role in the nucleation of microtubule polymerization. γ-Tubulin also exists as part of a cytoplasmic complex whose size and complexity varies in different organisms. To investigate the composition of the cytoplasmic γ-tubulin complex in mammalian cells, cell lines stably expressing epitope-tagged versions of human γ-tubulin were made. The epitope-tagged γ-tubulins expressed in these cells localize to the centrosome and are incorporated into the cytoplasmic γ-tubulin complex. Immunoprecipitation of this complex identifies at least seven proteins, with calculated molecular weights of 48, 71, 76, 100, 101, 128, and 211 kD. We have identified the 100- and 101-kD components of the γ-tubulin complex as homologues of the yeast spindle pole body proteins Spc97p and Spc98p, and named the corresponding human proteins hGCP2 and hGCP3. Sequence analysis revealed that these proteins are not only related to their respective homologues, but are also related to each other. GCP2 and GCP3 colocalize with γ-tubulin at the centrosome, cosediment with γ-tubulin in sucrose gradients, and coimmunoprecipitate with γ-tubulin, indicating that they are part of the γ-tubulin complex. The conservation of a complex involving γ-tubulin, GCP2, and GCP3 from yeast to mammals suggests that structurally diverse microtubule organizing centers such as the yeast spindle pole body and the animal centrosome share a common molecular mechanism for microtubule nucleation.


2019 ◽  
Vol 116 (27) ◽  
pp. 13293-13298 ◽  
Author(s):  
Ian R. Kelsall ◽  
Jiazhen Zhang ◽  
Axel Knebel ◽  
J. Simon C. Arthur ◽  
Philip Cohen

The linear ubiquitin assembly complex (LUBAC) comprises 3 components: HOIP, HOIL-1, and Sharpin, of which HOIP and HOIL-1 are both members of the RBR subfamily of E3 ubiquitin ligases. HOIP catalyses the formation of Met1-linked ubiquitin oligomers (also called linear ubiquitin), but the function of the E3 ligase activity of HOIL-1 is unknown. Here, we report that HOIL-1 is an atypical E3 ligase that forms oxyester bonds between the C terminus of ubiquitin and serine and threonine residues in its substrates. Exploiting the sensitivity of HOIL-1–generated oxyester bonds to cleavage by hydroxylamine, and macrophages from knock-in mice expressing the E3 ligase-inactive HOIL-1[C458S] mutant, we identify IRAK1, IRAK2, and MyD88 as physiological substrates of the HOIL-1 E3 ligase during Toll-like receptor signaling. HOIL-1 is a monoubiquitylating E3 ubiquitin ligase that initiates the de novo synthesis of polyubiquitin chains that are attached to these proteins in macrophages. HOIL-1 also catalyses its own monoubiquitylation in cells and most probably the monoubiquitylation of Sharpin, in which ubiquitin is also attached by an oxyester bond. Our study establishes that oxyester-linked ubiquitylation is used as an intracellular signaling mechanism.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1139 ◽  
Author(s):  
Carlos F. Rodríguez ◽  
Oscar Llorca

The Rvb1-Rvb2-Tah1-Pih1 (R2TP) complex is a co-chaperone complex that works together with HSP90 in the activation and assembly of several macromolecular complexes, including RNA polymerase II (Pol II) and complexes of the phosphatidylinositol-3-kinase-like family of kinases (PIKKs), such as mTORC1 and ATR/ATRIP. R2TP is made of four subunits: RuvB-like protein 1 (RUVBL1) and RuvB-like 2 (RUVBL2) AAA-type ATPases, RNA polymerase II-associated protein 3 (RPAP3), and the Protein interacting with Hsp90 1 (PIH1) domain-containing protein 1 (PIH1D1). R2TP associates with other proteins as part of a complex co-chaperone machinery involved in the assembly and maturation of a growing list of macromolecular complexes. Recent progress in the structural characterization of R2TP has revealed an alpha-helical domain at the C-terminus of RPAP3 that is essential to bring the RUVBL1 and RUVBL2 ATPases to R2TP. The RPAP3 C-terminal domain interacts directly with RUVBL2 and it is also known as RUVBL2-binding domain (RBD). Several human proteins contain a region homologous to the RPAP3 C-terminal domain, and some are capable of assembling R2TP-like complexes, which could have specialized functions. Only the RUVBL1-RUVBL2 ATPase complex and a protein containing an RPAP3 C-terminal-like domain are found in all R2TP and R2TP-like complexes. Therefore, the RPAP3 C-terminal domain is one of few components essential for the formation of all R2TP and R2TP-like co-chaperone complexes.


Sign in / Sign up

Export Citation Format

Share Document