scholarly journals Tweedle proteins form extracellular two-dimensional structures defining body and cell shape in Drosophila melanogaster

Open Biology ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 200214
Author(s):  
Renata Zuber ◽  
Yiwen Wang ◽  
Nicole Gehring ◽  
Slawomir Bartoszewski ◽  
Bernard Moussian

Tissue function and shape rely on the organization of the extracellular matrix (ECM) produced by the respective cells. Our understanding of the underlying molecular mechanisms is limited. Here, we show that extracellular Tweedle (Twdl) proteins in the fruit fly Drosophila melanogaster form two adjacent two-dimensional sheets underneath the cuticle surface and above a distinct layer of dityrosinylated and probably elastic proteins enwrapping the whole body. Dominant mutations in twdl genes cause ectopic spherical aggregation of Twdl proteins that recruit dityrosinylated proteins at their periphery within lower cuticle regions. These aggregates perturb parallel ridges at the surface of epidermal cells that have been demonstrated to be crucial for body shaping. In one scenario, hence, this disorientation of epidermal ridges may explain the squatty phenotype of Twdl mutant larvae. In an alternative scenario, this phenotype may be due to the depletion of the dityrosinylated and elastic layer, and the consequent weakening of cuticle resistance against the internal hydrostatic pressure. According to Barlow's formula describing the distribution of internal pressure forces in pipes in dependence of pipe wall material properties, it follows that this reduction in turn causes lateral expansion at the expense of the antero-posterior elongation of the body.

2018 ◽  
Vol 6 (3) ◽  
pp. 17 ◽  
Author(s):  
Mireya Ruiz-Losada ◽  
David Blom-Dahl ◽  
Sergio Córdoba ◽  
Carlos Estella

Appendages are external projections of the body that serve the animal for locomotion, feeding, or environment exploration. The appendages of the fruit fly Drosophila melanogaster are derived from the imaginal discs, epithelial sac-like structures specified in the embryo that grow and pattern during larva development. In the last decades, genetic and developmental studies in the fruit fly have provided extensive knowledge regarding the mechanisms that direct the formation of the appendages. Importantly, many of the signaling pathways and patterning genes identified and characterized in Drosophila have similar functions during vertebrate appendage development. In this review, we will summarize the genetic and molecular mechanisms that lead to the specification of appendage primordia in the embryo and their posterior patterning during imaginal disc development. The identification of the regulatory logic underlying appendage specification in Drosophila suggests that the evolutionary origin of the insect wing is, in part, related to the development of ventral appendages.


Development ◽  
2020 ◽  
Vol 147 (17) ◽  
pp. dev191049 ◽  
Author(s):  
Kia Z. Perez-Vale ◽  
Mark Peifer

ABSTRACTDuring embryonic development, a simple ball of cells re-shapes itself into the elaborate body plan of an animal. This requires dramatic cell shape changes and cell movements, powered by the contractile force generated by actin and myosin linked to the plasma membrane at cell-cell and cell-matrix junctions. Here, we review three morphogenetic events common to most animals: apical constriction, convergent extension and collective cell migration. Using the fruit fly Drosophila as an example, we discuss recent work that has revealed exciting new insights into the molecular mechanisms that allow cells to change shape and move without tearing tissues apart. We also point out parallel events at work in other animals, which suggest that the mechanisms underlying these morphogenetic processes are conserved.


Cholesterol ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Ryusuke Niwa ◽  
Yuko S. Niwa

Cholesterol has long been recognized for its versatile roles in influencing the biophysical properties of cell membranes and for serving as a precursor of steroid hormones. While many aspects of cholesterol biosynthesis are well understood, little is currently known about the molecular mechanisms of cholesterol metabolism and homeostasis. Recently, genetic approaches in the fruit fly, Drosophila melanogaster, have been successfully used for the analysis of molecular mechanisms that regulate cholesterol metabolism and homeostasis. This paper summarizes the recent studies on genes that regulate cholesterol metabolism and homeostasis, including neverland, Niemann Pick type C(NPC) disease genes, and DHR96.


Insects ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 598
Author(s):  
Aya Yanagawa ◽  
Masatoshi Tomaru ◽  
Atsushi Kajiwara ◽  
Hiroki Nakajima ◽  
Elie Desmond-Le Quemener ◽  
...  

The physiological and behavioral influences of 2.45 GHz microwaves on Drosophila melanogaster were examined. Standing waves transitioned into heat energy effectively when passing through the insect body. On the contrary, travelling waves did not transit into heat energy in the insect body. This indicated that there was no concern regarding the thermal effects of microwave irradiation for levels of daily usage. However, we detected genotoxicity and behavioral alterations associated with travelling wave irradiation, which can be attributed to the non-thermal effects of the waves. Electron spin resonance (ESR) revealed that fruit flies possessed paramagnetic substances in the body such as Fe3+, Cu2+, Mn2+, and organic radicals. The temperature dependent intensities of these paramagnetic substances indicated that females possessed more of the components susceptible to electromagnetic waves than males, and the behavioral tests supported the differences between the sexes.


2019 ◽  
Author(s):  
Clinton Rice ◽  
Stuart Macdonald ◽  
Xiaochen Wang ◽  
Robert E Ward

AbstractImaginal disc morphogenesis during metamorphosis in Drosophila melanogaster provides an excellent model to uncover molecular mechanisms by which hormonal signals effect physical changes during development. The broad (br) Z2 isoform encodes a transcription factor required for disc morphogenesis in response to 20-hydroxyecdysone, yet how it accomplishes this remains largely unknown. Here, we show that amorphic br5 mutant discs fail to remodel their basal extracellular matrix (ECM) after puparium formation and do not undergo necessary cell shape changes. RNA sequencing of wild type and mutant leg discs identified 717 genes differentially regulated by br; functional studies reveal that several are required for adult leg formation, particularly those involved in remodeling the ECM. Additionally, br Z2 expression is abruptly shut down at the onset of metamorphosis, and expressing it beyond this time results in failure of leg development during the late prepupal and pupal stages. Taken together, our results suggest that br Z2 is required to drive ECM remodeling, change cell shape, and maintain metabolic activity through the mid prepupal stage, but must be switched off to allow expression of pupation genes.Summary StatementThe Drosophila melanogaster ecdysone-responding transcription factor broad controls morphogenetic processes in leg imaginal discs during metamorphosis through regulation of genes involved in extracellular matrix remodeling, metabolism, and cell shape changes and rearrangements.


Author(s):  
Oluwatosin Imoleayo, Oyeniran

The rise in the cases of neurodegenerative diseases, such as the familial forms of Alzheimer’s disease is worrisome and a burden to many societies in our ever-increasing world. Due to the complexity in the nature of the brain and spinal cord characterized by an extremely organized network of neuronal cells, there is a need to answer scientific inquiries in uncomplicated, though similar, systems. Drosophila melanogaster (fruit-fly) is a well-studied and easily managed genetic model organism used for discerning the molecular mechanisms of many human diseases. There are strong conservations of several basic biological, physiological and neurological features between D. melanogaster and mammals, as about 75% of all human disease-causing genes are considered to possess a functional homolog in the fruit-fly. The development of Drosophila models of several neurodegenerative disorders via developed transgenic technologies has presented spectacular similarities to human diseases. An advantage that the fruit-fly has over other model organisms, such as the mouse, is its comparatively brief lifespan, which allows complex inquiries about brain functions to be addressed more quickly. Furthermore, there have been steady increases in understanding the pathophysiological basis of many neurological disorders via genetic screenings with the aid of Drosophila models. This review presents a widespread summary of the fruit-fly models relevant to Alzheimer’s disease, and highlight important genetic modifiers that have been recognized using this model.


Reproduction ◽  
2020 ◽  
Vol 159 (2) ◽  
pp. R69-R82 ◽  
Author(s):  
Alissa Richmond Armstrong

Observed in a wide variety of organism, from invertebrates to mammals, nutritional status modulates the energetically costly effort of producing female gametes. Despite this long-standing link between nutrition and ovarian function, relatively little is known about the cellular and molecular mechanisms that underlie how dietary components modulate egg production. Drosophila melanogaster, with its powerful and extensive genetic tools as well as its well-characterized ovarian response to diet, has proven to be instrumental in addressing this issue. This review covers what we currently know about the dietary control of oogenesis in Drosophila and the salient features of the fruit fly that make it a model for nutritional control of ovarian function.


Sign in / Sign up

Export Citation Format

Share Document