scholarly journals Impact of 2.45 GHz Microwave Irradiation on the Fruit Fly, Drosophila melanogaster

Insects ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 598
Author(s):  
Aya Yanagawa ◽  
Masatoshi Tomaru ◽  
Atsushi Kajiwara ◽  
Hiroki Nakajima ◽  
Elie Desmond-Le Quemener ◽  
...  

The physiological and behavioral influences of 2.45 GHz microwaves on Drosophila melanogaster were examined. Standing waves transitioned into heat energy effectively when passing through the insect body. On the contrary, travelling waves did not transit into heat energy in the insect body. This indicated that there was no concern regarding the thermal effects of microwave irradiation for levels of daily usage. However, we detected genotoxicity and behavioral alterations associated with travelling wave irradiation, which can be attributed to the non-thermal effects of the waves. Electron spin resonance (ESR) revealed that fruit flies possessed paramagnetic substances in the body such as Fe3+, Cu2+, Mn2+, and organic radicals. The temperature dependent intensities of these paramagnetic substances indicated that females possessed more of the components susceptible to electromagnetic waves than males, and the behavioral tests supported the differences between the sexes.

2018 ◽  
Vol 6 (3) ◽  
pp. 17 ◽  
Author(s):  
Mireya Ruiz-Losada ◽  
David Blom-Dahl ◽  
Sergio Córdoba ◽  
Carlos Estella

Appendages are external projections of the body that serve the animal for locomotion, feeding, or environment exploration. The appendages of the fruit fly Drosophila melanogaster are derived from the imaginal discs, epithelial sac-like structures specified in the embryo that grow and pattern during larva development. In the last decades, genetic and developmental studies in the fruit fly have provided extensive knowledge regarding the mechanisms that direct the formation of the appendages. Importantly, many of the signaling pathways and patterning genes identified and characterized in Drosophila have similar functions during vertebrate appendage development. In this review, we will summarize the genetic and molecular mechanisms that lead to the specification of appendage primordia in the embryo and their posterior patterning during imaginal disc development. The identification of the regulatory logic underlying appendage specification in Drosophila suggests that the evolutionary origin of the insect wing is, in part, related to the development of ventral appendages.


Open Biology ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 200214
Author(s):  
Renata Zuber ◽  
Yiwen Wang ◽  
Nicole Gehring ◽  
Slawomir Bartoszewski ◽  
Bernard Moussian

Tissue function and shape rely on the organization of the extracellular matrix (ECM) produced by the respective cells. Our understanding of the underlying molecular mechanisms is limited. Here, we show that extracellular Tweedle (Twdl) proteins in the fruit fly Drosophila melanogaster form two adjacent two-dimensional sheets underneath the cuticle surface and above a distinct layer of dityrosinylated and probably elastic proteins enwrapping the whole body. Dominant mutations in twdl genes cause ectopic spherical aggregation of Twdl proteins that recruit dityrosinylated proteins at their periphery within lower cuticle regions. These aggregates perturb parallel ridges at the surface of epidermal cells that have been demonstrated to be crucial for body shaping. In one scenario, hence, this disorientation of epidermal ridges may explain the squatty phenotype of Twdl mutant larvae. In an alternative scenario, this phenotype may be due to the depletion of the dityrosinylated and elastic layer, and the consequent weakening of cuticle resistance against the internal hydrostatic pressure. According to Barlow's formula describing the distribution of internal pressure forces in pipes in dependence of pipe wall material properties, it follows that this reduction in turn causes lateral expansion at the expense of the antero-posterior elongation of the body.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247376
Author(s):  
Irfan Akhtar ◽  
Fiona A. Stewart ◽  
Anna Härle ◽  
Andrea Droste ◽  
Mathias Beller

All metazoans are colonized by a complex and diverse set of microorganisms. The microbes colonize all parts of the body and are especially abundant in the gastrointestinal tract, where they constitute the gut microbiome. The fruit fly Drosophila melanogaster turned out to be an exquisite model organism to functionally test the importance of an intact gut microbiome. Still, however, fundamental questions remain unanswered. For example, it is unknown whether a fine-tuned regionalization of the gut microbiome exists and how such a spatial organization could be established. In order to pave the way for answering this question, we generated an optimized and adapted fluorescence in situ hybridization (FISH) protocol. We focused on the detection of the two major Drosophila gut microbiome constituting bacteria genera: Acetobacter and Lactobacillus. FISH allows to detect the bacteria in situ and thus to investigate their spatial localization in respect to the host as well as to other microbiome members. We demonstrate the applicability of the protocol using a diverse set of sample types.


1960 ◽  
Vol 12 (2) ◽  
pp. 75-84 ◽  
Author(s):  
F. J. Lockett

When an elastic solid is subjected to a dynamical system of surface or body forces, not all of the work done by these forces is employed in deforming the material. The remainder is converted into heat energy producing a distribution of temperature throughout the body. Similarly the application of a surface temperature distribution, or the introduction of heat sources within the body, produces elastic as well as thermal effects. Thus we see that in the dynamical case there is a link between these two types of condition—thermal and elastic.


2015 ◽  
Vol 2 (1) ◽  
pp. 100-106 ◽  
Author(s):  
Oleksandra Abrat

Last years, the concept of resistant starch (RS) has evoked a new interest in researchersin the context of bioavailability of starch and its use as a source of dietary fiber. Based on clinicaland animal research, RS has been proposed to be the most potentially beneficial starch fraction forhuman health. In this study, the effects of amylose starch as a fraction of RS on development andlifespan of fruit fly Drosophila melanogaster were investigated. In both Canton S and w1118 strains, thediet with 20% amylose RS delayed fly development, increased triacylglyceride level in the body ofadult insects and reduced their lifespan compared to the diet with 4% amylose starch. Thus, ourdata clearly demonstrate that amylose starch at high concentrations may negatively affect fruit fly


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rachel Paul ◽  
Guillaume Giraud ◽  
Katrin Domsch ◽  
Marilyne Duffraisse ◽  
Frédéric Marmigère ◽  
...  

AbstractFlying insects have invaded all the aerial space on Earth and this astonishing radiation could not have been possible without a remarkable morphological diversification of their flight appendages. Here, we show that characteristic spatial expression profiles and levels of the Hox genes Antennapedia (Antp) and Ultrabithorax (Ubx) underlie the formation of two different flight organs in the fruit fly Drosophila melanogaster. We further demonstrate that flight appendage morphology is dependent on specific Hox doses. Interestingly, we find that wing morphology from evolutionary distant four-winged insect species is also associated with a differential expression of Antp and Ubx. We propose that variation in the spatial expression profile and dosage of Hox proteins is a major determinant of flight appendage diversification in Drosophila and possibly in other insect species during evolution.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Xiaochan Xu ◽  
Wei Yang ◽  
Binghui Tian ◽  
Xiuwen Sui ◽  
Weilai Chi ◽  
...  

AbstractThe fruit fly, Drosophila melanogaster, has been used as a model organism for the molecular and genetic dissection of sleeping behaviors. However, most previous studies were based on qualitative or semi-quantitative characterizations. Here we quantified sleep in flies. We set up an assay to continuously track the activity of flies using infrared camera, which monitored the movement of tens of flies simultaneously with high spatial and temporal resolution. We obtained accurate statistics regarding the rest and sleep patterns of single flies. Analysis of our data has revealed a general pattern of rest and sleep: the rest statistics obeyed a power law distribution and the sleep statistics obeyed an exponential distribution. Thus, a resting fly would start to move again with a probability that decreased with the time it has rested, whereas a sleeping fly would wake up with a probability independent of how long it had slept. Resting transits to sleeping at time scales of minutes. Our method allows quantitative investigations of resting and sleeping behaviors and our results provide insights for mechanisms of falling into and waking up from sleep.


Sign in / Sign up

Export Citation Format

Share Document