scholarly journals Specification and Patterning of Drosophila Appendages

2018 ◽  
Vol 6 (3) ◽  
pp. 17 ◽  
Author(s):  
Mireya Ruiz-Losada ◽  
David Blom-Dahl ◽  
Sergio Córdoba ◽  
Carlos Estella

Appendages are external projections of the body that serve the animal for locomotion, feeding, or environment exploration. The appendages of the fruit fly Drosophila melanogaster are derived from the imaginal discs, epithelial sac-like structures specified in the embryo that grow and pattern during larva development. In the last decades, genetic and developmental studies in the fruit fly have provided extensive knowledge regarding the mechanisms that direct the formation of the appendages. Importantly, many of the signaling pathways and patterning genes identified and characterized in Drosophila have similar functions during vertebrate appendage development. In this review, we will summarize the genetic and molecular mechanisms that lead to the specification of appendage primordia in the embryo and their posterior patterning during imaginal disc development. The identification of the regulatory logic underlying appendage specification in Drosophila suggests that the evolutionary origin of the insect wing is, in part, related to the development of ventral appendages.

Open Biology ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 200214
Author(s):  
Renata Zuber ◽  
Yiwen Wang ◽  
Nicole Gehring ◽  
Slawomir Bartoszewski ◽  
Bernard Moussian

Tissue function and shape rely on the organization of the extracellular matrix (ECM) produced by the respective cells. Our understanding of the underlying molecular mechanisms is limited. Here, we show that extracellular Tweedle (Twdl) proteins in the fruit fly Drosophila melanogaster form two adjacent two-dimensional sheets underneath the cuticle surface and above a distinct layer of dityrosinylated and probably elastic proteins enwrapping the whole body. Dominant mutations in twdl genes cause ectopic spherical aggregation of Twdl proteins that recruit dityrosinylated proteins at their periphery within lower cuticle regions. These aggregates perturb parallel ridges at the surface of epidermal cells that have been demonstrated to be crucial for body shaping. In one scenario, hence, this disorientation of epidermal ridges may explain the squatty phenotype of Twdl mutant larvae. In an alternative scenario, this phenotype may be due to the depletion of the dityrosinylated and elastic layer, and the consequent weakening of cuticle resistance against the internal hydrostatic pressure. According to Barlow's formula describing the distribution of internal pressure forces in pipes in dependence of pipe wall material properties, it follows that this reduction in turn causes lateral expansion at the expense of the antero-posterior elongation of the body.


2019 ◽  
Vol 20 (18) ◽  
pp. 4549 ◽  
Author(s):  
Yan Lin ◽  
Lujie Li ◽  
Yang Li ◽  
Ke Wang ◽  
Dongqin Wei ◽  
...  

To study the effects of maternal fiber supplementation during pregnancy on the testicular development of male offspring and its possible mechanisms, 36 sows (Landrace × Yorkshire) were allocated to either a control diet (n = 18) or a fiber diet (the control diet supplemented with 22.60 g/kg inulin and 181.60 g/kg cellulosic; n = 18) during pregnancy. The body and testes weight of the offspring, 7-day-old piglets, was recorded. Testes were collected for further analyses. Results showed that the testicular organ index and the number of spermatogonia in single seminiferous tubule were higher in piglets from the fiber group than from the control group (p < 0.05). In addition, a significant increase in the concentration of glucose, lactate, and lipids in the testes was found in the fiber group (p < 0.05). Proteomic analysis suggested that there were notable differences in glucolipid transport and metabolism, oxidation, and male reproduction-related proteins expression between the two groups (p < 0.05). Results revealed that the most enriched signaling pathways in the fiber group testes included starch and sucrose metabolism, fatty acid metabolism, glutathione metabolism, and the renin-angiotensin system. mRNA expression analyzes further confirmed the importance of some signaling pathways in maternal fiber nutrition regulating offspring testicular development. Our results shed new light on the underlying molecular mechanisms of maternal fiber nutrition on offspring testicular development and provided a valuable insight for future explorations of the effect of maternal fiber nutrition on man reproduction.


Cholesterol ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Ryusuke Niwa ◽  
Yuko S. Niwa

Cholesterol has long been recognized for its versatile roles in influencing the biophysical properties of cell membranes and for serving as a precursor of steroid hormones. While many aspects of cholesterol biosynthesis are well understood, little is currently known about the molecular mechanisms of cholesterol metabolism and homeostasis. Recently, genetic approaches in the fruit fly, Drosophila melanogaster, have been successfully used for the analysis of molecular mechanisms that regulate cholesterol metabolism and homeostasis. This paper summarizes the recent studies on genes that regulate cholesterol metabolism and homeostasis, including neverland, Niemann Pick type C(NPC) disease genes, and DHR96.


Insects ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 598
Author(s):  
Aya Yanagawa ◽  
Masatoshi Tomaru ◽  
Atsushi Kajiwara ◽  
Hiroki Nakajima ◽  
Elie Desmond-Le Quemener ◽  
...  

The physiological and behavioral influences of 2.45 GHz microwaves on Drosophila melanogaster were examined. Standing waves transitioned into heat energy effectively when passing through the insect body. On the contrary, travelling waves did not transit into heat energy in the insect body. This indicated that there was no concern regarding the thermal effects of microwave irradiation for levels of daily usage. However, we detected genotoxicity and behavioral alterations associated with travelling wave irradiation, which can be attributed to the non-thermal effects of the waves. Electron spin resonance (ESR) revealed that fruit flies possessed paramagnetic substances in the body such as Fe3+, Cu2+, Mn2+, and organic radicals. The temperature dependent intensities of these paramagnetic substances indicated that females possessed more of the components susceptible to electromagnetic waves than males, and the behavioral tests supported the differences between the sexes.


2019 ◽  
Author(s):  
Clinton Rice ◽  
Stuart Macdonald ◽  
Xiaochen Wang ◽  
Robert E Ward

AbstractImaginal disc morphogenesis during metamorphosis in Drosophila melanogaster provides an excellent model to uncover molecular mechanisms by which hormonal signals effect physical changes during development. The broad (br) Z2 isoform encodes a transcription factor required for disc morphogenesis in response to 20-hydroxyecdysone, yet how it accomplishes this remains largely unknown. Here, we show that amorphic br5 mutant discs fail to remodel their basal extracellular matrix (ECM) after puparium formation and do not undergo necessary cell shape changes. RNA sequencing of wild type and mutant leg discs identified 717 genes differentially regulated by br; functional studies reveal that several are required for adult leg formation, particularly those involved in remodeling the ECM. Additionally, br Z2 expression is abruptly shut down at the onset of metamorphosis, and expressing it beyond this time results in failure of leg development during the late prepupal and pupal stages. Taken together, our results suggest that br Z2 is required to drive ECM remodeling, change cell shape, and maintain metabolic activity through the mid prepupal stage, but must be switched off to allow expression of pupation genes.Summary StatementThe Drosophila melanogaster ecdysone-responding transcription factor broad controls morphogenetic processes in leg imaginal discs during metamorphosis through regulation of genes involved in extracellular matrix remodeling, metabolism, and cell shape changes and rearrangements.


Author(s):  
Oluwatosin Imoleayo, Oyeniran

The rise in the cases of neurodegenerative diseases, such as the familial forms of Alzheimer’s disease is worrisome and a burden to many societies in our ever-increasing world. Due to the complexity in the nature of the brain and spinal cord characterized by an extremely organized network of neuronal cells, there is a need to answer scientific inquiries in uncomplicated, though similar, systems. Drosophila melanogaster (fruit-fly) is a well-studied and easily managed genetic model organism used for discerning the molecular mechanisms of many human diseases. There are strong conservations of several basic biological, physiological and neurological features between D. melanogaster and mammals, as about 75% of all human disease-causing genes are considered to possess a functional homolog in the fruit-fly. The development of Drosophila models of several neurodegenerative disorders via developed transgenic technologies has presented spectacular similarities to human diseases. An advantage that the fruit-fly has over other model organisms, such as the mouse, is its comparatively brief lifespan, which allows complex inquiries about brain functions to be addressed more quickly. Furthermore, there have been steady increases in understanding the pathophysiological basis of many neurological disorders via genetic screenings with the aid of Drosophila models. This review presents a widespread summary of the fruit-fly models relevant to Alzheimer’s disease, and highlight important genetic modifiers that have been recognized using this model.


Reproduction ◽  
2020 ◽  
Vol 159 (2) ◽  
pp. R69-R82 ◽  
Author(s):  
Alissa Richmond Armstrong

Observed in a wide variety of organism, from invertebrates to mammals, nutritional status modulates the energetically costly effort of producing female gametes. Despite this long-standing link between nutrition and ovarian function, relatively little is known about the cellular and molecular mechanisms that underlie how dietary components modulate egg production. Drosophila melanogaster, with its powerful and extensive genetic tools as well as its well-characterized ovarian response to diet, has proven to be instrumental in addressing this issue. This review covers what we currently know about the dietary control of oogenesis in Drosophila and the salient features of the fruit fly that make it a model for nutritional control of ovarian function.


Development ◽  
2000 ◽  
Vol 127 (8) ◽  
pp. 1617-1626 ◽  
Author(s):  
E.L. Jockusch ◽  
C. Nulsen ◽  
S.J. Newfeld ◽  
L.M. Nagy

All insect legs are structurally similar, characterized by five primary segments. However, this final form is achieved in different ways. Primitively, the legs developed as direct outgrowths of the body wall, a condition retained in most insect species. In some groups, including the lineage containing the genus Drosophila, legs develop indirectly from imaginal discs. Our understanding of the molecular mechanisms regulating leg development is based largely on analysis of this derived mode of leg development in the species D. melanogaster. The current model for Drosophila leg development is divided into two phases, embryonic allocation and imaginal disc patterning, which are distinguished by interactions among the genes wingless (wg), decapentaplegic (dpp) and distalless (dll). In the allocation phase, dll is activated by wg but repressed by dpp. During imaginal disc patterning, dpp and wg cooperatively activate dll and also indirectly inhibit the nuclear localization of Extradenticle (Exd), which divide the leg into distal and proximal domains. In the grasshopper Schistocerca americana, the early expression pattern of dpp differs radically from the Drosophila pattern, suggesting that the genetic interactions that allocate the leg differ between the two species. Despite early differences in dpp expression, wg, Dll and Exd are expressed in similar patterns throughout the development of grasshopper and fly legs, suggesting that some aspects of proximodistal (P/D) patterning are evolutionarily conserved. We also detect differences in later dpp expression, which suggests that dpp likely plays a role in limb segmentation in Schistocerca, but not in Drosophila. The divergence in dpp expression is surprising given that all other comparative data on gene expression during insect leg development indicate that the molecular pathways regulating this process are conserved. However, it is consistent with the early divergence in developmental mode between fly and grasshopper limbs.


Author(s):  
Andrea Keller ◽  
Tyus Temple ◽  
Behnam Sayanjali ◽  
Maria M. Mihaylova

AbstractPurpose of ReviewFrom invertebrates to vertebrates, the ability to sense nutrient availability is critical for survival. Complex organisms have evolved numerous signaling pathways to sense nutrients and dietary fluctuations, which influence many cellular processes. Although both overabundance and extreme depletion of nutrients can lead to deleterious effects, dietary restriction without malnutrition can increase lifespan and promote overall health in many model organisms. In this review, we focus on age-dependent changes in stem cell metabolism and dietary interventions used to modulate stem cell function in aging.Recent FindingsOver the last half-century, seminal studies have illustrated that dietary restriction confers beneficial effects on longevity in many model organisms. Many researchers have now turned to dissecting the molecular mechanisms by which these diets affect aging at the cellular level. One subpopulation of cells of particular interest are adult stem cells, the most regenerative cells of the body. It is generally accepted that the regenerative capacity of stem cells declines with age, and while the metabolic requirements of each vary across tissues, the ability of dietary interventions to influence stem cell function is striking.SummaryIn this review, we will focus primarily on how metabolism plays a role in adult stem cell homeostasis with respect to aging, with particular emphasis on intestinal stem cells while also touching on hematopoietic, skeletal muscle, and neural stem cells. We will also discuss key metabolic signaling pathways influenced by both dietary restriction and the aging process, and will examine their role in improving tissue homeostasis and lifespan. Understanding the mechanisms behind the metabolic needs of stem cells will help bridge the divide between a basic science interpretation of stem cell function and a whole-organism view of nutrition, thereby providing insight into potential dietary or therapeutic interventions.


2020 ◽  
Author(s):  
Timothy D. Wiggin ◽  
Yung-Yi Hsiao ◽  
Jeffrey B. Liu ◽  
Robert Huber ◽  
Leslie C. Griffith

ABSTRACTMaladaptive operant conditioning contributes to development of neuropsychiatric disorders. Candidate genes have been identified that contribute to this maladaptive plasticity, but the neural basis of operant conditioning in genetic model organisms remains poorly understood. The fruit fly Drosophila melanogaster is a versatile genetic model organism that readily forms operant associations with punishment stimuli. However, operant conditioning with a food reward has not been demonstrated in flies, limiting the types of neural circuits that can be studied. Here we present the first sucrose-reinforced operant conditioning paradigm for flies. Flies of both sexes walk along a Y-shaped track with reward locations at the terminus of each hallway. When flies turn in the reinforced direction at the center of the track, sucrose is presented at the end of the hallway. Only flies that rest during training show evidence of learning the reward contingency. Flies rewarded independently of their behavior do not form a learned association but have the same amount of rest as trained flies, showing that rest is not driven by learning. Optogenetically-induced rest does not promote learning, indicating that rest is not sufficient for learning the operant task. We validated the sensitivity of this assay to detect the effect of genetic manipulations by testing the classic learning mutant dunce. Dunce flies are learning impaired in the Y-Track task, indicating a likely role for cAMP in the operant coincidence detector. This novel training paradigm will provide valuable insight into the molecular mechanisms of disease and the link between sleep and learning.SIGNIFICANCE STATEMENTOperant conditioning and mental health are deeply intertwined: maladaptive conditioning contributes to many pathologies, while therapeutic operant conditioning is a frequently used tool in talk therapy. Unlike drug interventions which target molecules or mechanisms, it is not known how operant conditioning changes the brain to promote wellness or distress. To gain mechanistic insight into how this form of learning works, we developed a novel operant training task for the fruit fly Drosophila melanogaster. We made three key discoveries. First, flies are able to learn an operant task to find food reward. Second, rest during training is necessary for learning. Third, the dunce gene is necessary for both classical and operant conditioning in flies, indicating that they may share molecular mechanisms.


Sign in / Sign up

Export Citation Format

Share Document