scholarly journals Failure modes analysis of electrofluidic display under thermal ageing

2018 ◽  
Vol 5 (11) ◽  
pp. 181121 ◽  
Author(s):  
Baoqin Dong ◽  
Biao Tang ◽  
Jan Groenewold ◽  
Hui Li ◽  
Rui Zhou ◽  
...  

Dielectric failure as well as optical switching failure in electrofluidic display (EFD) are still a bottleneck for sufficient device lifetime. In this study, a dielectric redundancy-designed multilayer insulator of ParyleneC/AF1600X was applied in an EFD device. The reliability performance was systematically studied by tracking the applied voltage-dependent leakage current and capacitance changes (I–V and C–V curves) with thermal ageing time. The multilayer insulator shows a more stable performance in leakage current compared to a single-layer insulator. The failure modes during operation underlying the single-layer and the multilayer dielectric appear to be different as exemplified by microscopic images. The single-layer AFX shows significant detachment. In addition, by quantitatively analysing the C–V curves with ageing time, we find that for the single AFX device, the dominant failure mode is ‘no-opening’ of the pixels. For the multilayer device, the dominant failure mode is ‘no-closing’ of the pixels. This study provides tools for distinguishing the basic failure modes of an EFD device and demonstrates a quantitative method for evaluating the reliability performance of the device under thermal ageing.

Author(s):  
Brad Jones ◽  
André-Michel Ferrari

Scorecards are generally used to track operational performance in various fields of work and direct the management team toward correcting the observed deviations. Generally, a Scorecard is made up of specific metrics which have been carefully identified against defined operating objectives. In this paper, the Scorecard examined uses a reliability growth indicator in combination with other traditional factors to measure speed of progress to a target level. As a leading liquid pipeline operator, Enbridge Pipelines Inc. (hereafter “Enbridge”) holds established and comprehensive management systems governing all aspects of its operations. In essence the Reliability Scorecard adds enhanced capabilities to the existing systems. In September 2010, using current throughput performance and failure historical data, the Reliability Team in Enbridge developed a quarterly Reliability Scorecard for its pipeline network. Metrics for each pipeline consisted of utilization, adherence to shipping schedules and a unique reliability growth indicator of the overall line as well as the top ten failure modes. This enabled not only the tracking of performance levels but also the direction and speed of improvement or decline in those metrics. The analysis was conducted using the Crow-AMSAA Analytical Process. Using the throughput impact (e.g. barrels not shipped), level of reliability performance and magnitude of reliability improvement for each failure mode on all pipelines, it became easy to select targets for improvement. Unacceptable deviations were those having more than a 10% share of throughput volume impact per failure mode combined with a Crow AMSAA growth factor (Beta) of 1.2 or greater. The advent of this Reliability Scorecard has improved the organizational focus on areas with greatest impact on pipeline performance and revenue generation. Having a solid indication of the issues affecting each pipeline system, the Reliability Team was able to target its efforts accordingly. For example, for a specific high impact failure mode, a formal Root Cause Analysis would be conducted to identify the causes and implement a corrective action plan. Additionally, systematic lack of improvement for one failure mode over multiple quarters would be shared with relevant teams as awareness of specific threats to performance in their area. In essence, if well-defined and accepted, an effective Scorecard can be a powerful driver for improvement in an organization. It can assist in channeling the efforts of individuals, departments or the overall organization in addressing real threats to performance specific fields. Management can also use this tool to justify where appropriate resources need to be allocated. Finally, as demonstrated in this case, in addition to traditional operational targets, an improvement or regression factor can also be used to measure the progress or decline of specific scorecard metrics.


2013 ◽  
Vol 351-352 ◽  
pp. 80-84
Author(s):  
Duo Zhi Wang ◽  
Feng Fan ◽  
Xu Dong Zhi ◽  
Jun Wu Dai

Based on the ANSYS/LS-DYNA software, the analysis for the 40m span geodesic spherical domes under impact load is carried out. By changing the mass of impact object, impact velocity and impact location, the parametric analyses on the dynamic response of the structures under the impact loading are carried out. The three failure modes of the spherical domes are summed up: local dent of structure and global collapse of structure, Punch failure of structure. Then the characteristics of the dynamic response of the structure with different failure mode, such as the impact course, impact load, speed of nodes, displacement of nodes, and stress of bars, are investigated. It is further improvement of failure mode for single-layer reticulated dome under impact.


Author(s):  
Cha-Ming Shen ◽  
Tsan-Cheng Chuang ◽  
Jie-Fei Chang ◽  
Jin-Hong Chou

Abstract This paper presents a novel deductive methodology, which is accomplished by applying difference analysis to nano-probing technique. In order to prove the novel methodology, the specimens with 90nm process and soft failures were chosen for the experiment. The objective is to overcome the difficulty in detecting non-visual, erratic, and complex failure modes. And the original idea of this deductive method is based on the complete measurement of electrical characteristic by nano-probing and difference analysis. The capability to distinguish erratic and invisible defect was proven, even when the compound and complicated failure mode resulted in a puzzling characteristic.


Author(s):  
Martin Versen ◽  
Dorina Diaconescu ◽  
Jerome Touzel

Abstract The characterization of failure modes of DRAM is often straight forward if array related hard failures with specific addresses for localization are concerned. The paper presents a case study of a bitline oriented failure mode connected to a redundancy evaluation in the DRAM periphery. The failure mode analysis and fault modeling focus both on the root-cause and on the test aspects of the problem.


Author(s):  
Bhanu P. Sood ◽  
Michael Pecht ◽  
John Miker ◽  
Tom Wanek

Abstract Schottky diodes are semiconductor switching devices with low forward voltage drops and very fast switching speeds. This paper provides an overview of the common failure modes in Schottky diodes and corresponding failure mechanisms associated with each failure mode. Results of material level evaluation on diodes and packages as well as manufacturing and assembly processes are analyzed to identify a set of possible failure sites with associated failure modes, mechanisms, and causes. A case study is then presented to illustrate the application of a systematic FMMEA methodology to the analysis of a specific failure in a Schottky diode package.


Author(s):  
Dong Gun Kim ◽  
Cheol Hyun An ◽  
Sanghyeon Kim ◽  
Dae Seon Kwon ◽  
Junil Lim ◽  
...  

Atomic layer deposited TiO2- and Al2O3-based high-k gate insulator (GI) were examined for the Ge-based metal-oxide-semiconductor capacitor application. The single-layer TiO2 film showed a too high leakage current to be...


Author(s):  
Elena Bartolomé ◽  
Paula Benítez

Failure Mode and Effect Analysis (FMEA) is a powerful quality tool, widely used in industry, for the identification of failure modes, their effects and causes. In this work, we investigated the utility of FMEA in the education field to improve active learning processes. In our case study, the FMEA principles were adapted to assess the risk of failures in a Mechanical Engineering course on “Theory of Machines and Mechanisms” conducted through a project-based, collaborative “Study and Research Path (SRP)” methodology. The SRP is an active learning instruction format which is initiated by a generating question that leads to a sequence of derived questions and answers, and combines moments of study and inquiry. By applying the FMEA, the teaching team was able to identify the most critical failures of the process, and implement corrective actions to improve the SRP in the subsequent year. Thus, our work shows that FMEA represents a simple tool of risk assesment which can serve to identify criticality in educational process, and improve the quality of active learning.


2016 ◽  
Vol 33 (6) ◽  
pp. 830-851 ◽  
Author(s):  
Soumen Kumar Roy ◽  
A K Sarkar ◽  
Biswajit Mahanty

Purpose – The purpose of this paper is to evolve a guideline for scientists and development engineers to the failure behavior of electro-optical target tracker system (EOTTS) using fuzzy methodology leading to success of short-range homing guided missile (SRHGM) in which this critical subsystems is exploited. Design/methodology/approach – Technology index (TI) and fuzzy failure mode effect analysis (FMEA) are used to build an integrated framework to facilitate the system technology assessment and failure modes. Failure mode analysis is carried out for the system using data gathered from technical experts involved in design and realization of the EOTTS. In order to circumvent the limitations of the traditional failure mode effects and criticality analysis (FMECA), fuzzy FMCEA is adopted for the prioritization of the risks. FMEA parameters – severity, occurrence and detection are fuzzifed with suitable membership functions. These membership functions are used to define failure modes. Open source linear programming solver is used to solve linear equations. Findings – It is found that EOTTS has the highest TI among the major technologies used in the SRHGM. Fuzzy risk priority numbers (FRPN) for all important failure modes of the EOTTS are calculated and the failure modes are ranked to arrive at important monitoring points during design and development of the weapon system. Originality/value – This paper integrates the use of TI, fuzzy logic and experts’ database with FMEA toward assisting the scientists and engineers while conducting failure mode and effect analysis to prioritize failures toward taking corrective measure during the design and development of EOTTS.


2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
O. I. Sekunowo ◽  
G. I. Lawal ◽  
S. O. Adeosun

Samples of the 6063 (Al-1.09Mg2Si) alloy ingot were melted in a crucible furnace and cast in metal and sand moulds, respectively. Standard tensile, hardness, and microstructural test specimens were prepared from cast samples, solution treated at 520∘C, soaked for 6 hrs, and immediately quenched at ambient temperature in a trough containing water to assume a supersaturated structure. The quenched specimens were then thermally aged at 175∘C for 3–7 hrs. Results show that at different ageing time, varied fractions of precipitates and intermetallics evolved in the specimens’ matrices which affect the resulting mechanical properties. The metal mould specimens aged for four hours (MTA-4) exhibited superior ultimate tensile strength of 247.8 MPa; microhardness, 68.5 HV; elongation, 28.2% . It is concluded that the extent of improvement in mechanical properties depends on the fractions, coherence, and distribution of precipitates along with the type of intermetallics developed in the alloy during ageing process.


Sign in / Sign up

Export Citation Format

Share Document