scholarly journals Airflow analysis of Pyeongtaek St Mary's Hospital during hospitalization of the first Middle East respiratory syndrome patient in Korea

2019 ◽  
Vol 6 (3) ◽  
pp. 181164 ◽  
Author(s):  
Seongmin Jo ◽  
Jinkwan Hong ◽  
Sang-Eun Lee ◽  
Moran Ki ◽  
Bo Youl Choi ◽  
...  

Middle East respiratory syndrome (MERS) is known to be transmitted through close contact. However, epidemiological surveys of MERS in Korea indicated that some secondary patients were infected without close contact. Therefore, the possibility of other transmission routes must be identified. In this study, the possibility of MERS spreading through airflow was investigated on the eighth floor of Pyeongtaek St Mary's Hospital. Computational fluid dynamics was used to analyse the indoor airflow and passive tracer diffusion during the index patient's stay. Six cases were simulated for different outdoor wind directions and indoor mechanical ventilation operations. When a passive tracer was released in ward 8104, where the index patient was hospitalized, the passive tracer spread through the indoor airflow, which was created by the outdoor airflow. Ward 8109, which had the largest number of infected cases and was far distant from ward 8104, showed passive tracer concentration in all cases. This result indicates that MERS may have spread through airflow. The study results do not imply that the infection pathway of MERS is airborne. However, the results show the possibility of MERS spreading through airflow in specific environments such as poor ventilation environments.

Author(s):  
Minki Sung ◽  
Seongmin Jo ◽  
Sang-Eun Lee ◽  
Moran Ki ◽  
Bo Choi ◽  
...  

In this study, the results of an airflow investigation conducted on 7 June 2015 as part of a series of epidemiologic investigations at Pyeongtaek St. Mary’s Hospital, South Korea, were investigated. The study involved 38 individuals who were infected directly and indirectly with Middle East Respiratory Syndrome (MERS), by a super-spreader patient. Tracer gas experiments conducted on the eighth floor, where the initial patient was hospitalized, confirmed that the tracer gas spread to adjacent patient rooms and rooms across corridors. In particular, the experiment with an external wind direction and speed similar to those during the hospitalization of the initial patient revealed that the air change rate was 17–20 air changes per hour (ACH), with air introduced through the window in the room of the infected patient (room 8104). The tracer gas concentration of room 8110, which was the farthest room, was 7.56% of room 8104, indicating that a high concentration of gas has spread from room 8104 to rooms across the corridor. In contrast, the tracer gas was barely detected in a maternity ward to the south of room 8104, where there was no secondary infected patient. Moreover, MERS is known to spread mainly by droplets through close contact, but long-distance dispersion is probable in certain environments, such as that of a super-spreader patient hospitalized in a room without ventilation, hospitals with a central corridor type, and indoor airflow dispersion due to external wind.


2021 ◽  
Author(s):  
Aiydh Alshehri ◽  
Mir Naiman Ali ◽  
Nabil Miled

Abstract Background: Middle East respiratory syndrome coronavirus (MERS-CoV) causes viral pneumonia disease in humans. The close contact with camels and drinking milk may cause Middle East respiratory syndrome coronavirus transfer to humans. Methods: This study was designed to detect the existence of Middle East respiratory syndrome coronavirus in camel milk samples collected from healthy animals according to local customs from 83 barns located around Saudi Arabia. Camel milk samples were examined for viral RNA by RT-qPCR, also ELISA assay was performed to detect IgG antibodies directed against MERS Receptor-Binding Protein (RBD).Results: Among 83 camel milk samples tested,the result showed that seven samples (8.4%) were positive for MERS-CoV RNA, while 40.9% of camel milk samples had antibodies directed against this virus.Conclusions: The findings indicate that some regions (East and South part) are characterized by a high incidence of viral antibodies. The South western region displayed the lowest infection rates. Camel breed Sahilia seems to be resistant to viral infection as compared to other breeds such as Hamra. This need to be more explored in order to reduce spread of infection and also to understand the underlying reasons. The presence of viral RNA in camel milk samples warrants for measures to prevent possible food-borne transmission of Middle East respiratory syndrome coronavirus through milk consumption.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Hyun Kyun Ki ◽  
Sang Kuk Han ◽  
Jun Seong Son ◽  
Sang O Park

Abstract Background In 2015, South Korea experienced an outbreak of Middle East respiratory syndrome (MERS), and our hospital experienced a nosocomial MERS infection. We performed a comprehensive analysis to identify the MERS transmission route and the ability of our routine infection-prevention policy to control this outbreak. Methods This is a case–cohort study of retrospectively analysed data from medical charts, closed-circuit television, personal interviews and a national database. We analysed data of people at risk of MERS transmission including 228 in the emergency department (ED) and 218 in general wards (GW). Data of personnel location and movement, personal protection equipment and hand hygiene was recorded. Transmission risk was determined as the extent of exposure to the index patient: 1) high risk: staying within 2 m; 2) intermediate risk: staying in the same room at same time; and 3) low risk: only staying in the same department without contact. Results The index patient was an old patient admitted to our hospital. 11 transmissions from the index patient were identified; 4 were infected in our hospital. Personnel in the ED exhibited higher rates of compliance with routine infection-prevention methods as observed objectively: 93% wore a surgical mask and 95.6% washed their hands. Only 1.8% of personnel were observed to wear a surgical mask in the GW. ED had a higher percentage of high-risk individuals compared with the GW (14.5% vs. 2.8%), but the attack rate was higher in the GW (16.7%; l/6) than in the ED (3%; 1/33). There were no transmissions in the intermediate- and low-risk groups in the ED. Otherwise 2 patients were infected in the GW among the low-risk group. MERS were transmitted to them indirectly by staff who cared for the index patient. Conclusions Our study provide compelling evidence that routine infection-prevention policies can greatly reduce nosocomial transmission of MERS. Conventional isolation is established mainly from contact tracing of patients during a MERS outbreak. But it should be extended to all people treated by any medical employee who has contact with MERS patients. Trial registration NCT02605109, date of registration: 11th November 2015.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Maged Gomaa Hemida ◽  
Mohammed Alhammadi ◽  
Faisal Almathen ◽  
Abdelmohsen Alnaeem

Abstract Objective The Middle East respiratory syndrome coronavirus (MERS-CoV) is one of the zoonotic coronaviruses [Hemida Peer J 7:e7556, 2019; Hemida et al. One Health 8:100102, 2019]. The dromedary camels remained the only known animal reservoir for this virus. Several aspects of the transmission cycle of the virus between animals, including arthropod-borne infection, is still largely unknown. The main objective of the current work was to study the possibility of MERS-CoV transmission through some arthropod vectors, particularly the hard ticks. To achieve this objective, we identified a positive MERS-CoV dromedary camel herd using the commercial available real-time PCR kits. We collected some arthropods, particularly the ticks from these positive animals as well as from the animal habitats. We tested these arthropods for the presence of MERS-CoV viral RNAs. Results Our results showing the absence of any detectable MERS-CoV-RNAs in these arthropods despite these animals were actively shedding the virus in their nasal secretions. Our results are confirming for the first the failure of detection of the MERS-CoV in ticks infesting dromedary camels. Failure of the detection of MERS-CoV in ticks infesting positive naturally infected MERS-CoV camels is strongly suggesting that ticks do not play roles in the transmission of the virus among the animals and close contact humans.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7556 ◽  
Author(s):  
Maged Gomaa Hemida

Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is one of the major threats to the healthcare systems in some countries, especially in the Arabian Peninsula. MERS-CoV is considered an ideal example of the One Health concept. This is due to the animals, especially dromedary camels, play important roles in the transmission and sustainability of the virus, and the virus can be transmitted through aerosols of infected patients into the environment. However, there is some debate regarding the origin of MERS-CoV either from bats or other unknown reservoirs. The dromedary camel is the only identified animal reservoir to date. These animals play important roles in sustaining the virus in certain communities and may act as an amplifier of the virus by secreting it in their body fluids, especially in nasal and rectal discharges. MERS-CoV has been detected in the nasal and rectal secretions of infected camels, and MERS-CoV of this origin has full capacity to infect human airway epithelium in both in vitro and in vivo models. Other evidence confirms the direct transmission of MERS-CoV from camels to humans, though the role of camel meat and milk products has yet to be well studied. Human-to-human transmission is well documented through contact with an active infected patient or some silently infected persons. Furthermore, there are some significant risk factors of individuals in close contact with a positive MERS-CoV patient, including sleeping in the same patient room, removing patient waste (urine, stool, and sputum), and touching respiratory secretions from the index case. Outbreaks within family clusters have been reported, whereby some blood relative patients were infected through their wives in the same house were not infected. Some predisposing genetic factors favor MERS-CoV infection in some patients, which is worth investigating in the near future. The presence of other comorbidities may be another factor. Overall, there are many unknown/confirmed aspects of the virus/human/animal network. Here, the most recent advances in this context are discussed, and the possible reasons behind the emergence and sustainability of MERS-CoV in certain regions are presented. Identification of the exact mechanism of transmission of MERS-CoV from camels to humans and searching for new reservoir/s are of high priority. This will reduce the shedding of the virus into the environment, and thus the risk of human infection can be mitigated.


2020 ◽  
Vol 148 ◽  
Author(s):  
Maged Gomaa Hemida ◽  
Mohammed Ali ◽  
Mohammed Alhammadi ◽  
Abdelmohsen Alnaeem

Abstract Dromedary camels remain the currently identified reservoir for the Middle East respiratory syndrome coronavirus (MERS-CoV). The virus is released in the secretions of the infected camels, especially the nasal tract. The virus shedding curve through the nasal secretions was studied. Although human transmission of the virus through the respiratory tract of close contact people with dromedary reported previously, the exact mechanism of transmission is still largely unknown. The main goal of this study was to check the possibility of MERS-CoV shedding in the exhaled air of the infected camels. To achieve this goal, we conducted a follow-up study in one of the dromedary camel herds, December 2018–April 2019. We tested nasal swabs, breath samples from animals within this herd by the real-time PCR. Our results showed that some of the tested nasal swabs and breath were positive from 24 March 2019 until 7 April 2019. The phylogenetic analysis of the obtained S and N gene sequences revealed the detected viruses are clustering together with some human and camel samples from the eastern region, especially from Al-Hufuf city, as well as some samples from Qatar and Jordon. These results are clearly showing the possibility of shedding of the virus in the breath of the infected camels. This could explain, at least in part, the mechanism of transmission of MERS-CoV from animals to humans. This study is confirming the shedding of MERS-CoV in the exhaled air of the infected camels. Further studies are needed for a better understanding of the MERS-CoV.


PeerJ ◽  
2015 ◽  
Vol 3 ◽  
pp. e1505 ◽  
Author(s):  
Ying-Hen Hsieh

Background. Since the emergence of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in 2012, more than 1,300 laboratory confirmed cases of MERS-CoV infections have been reported in Asia, North Africa, and Europe by July 2015. The recent MERS-CoV nosocomial outbreak in South Korea quickly became the second largest such outbreak with 186 total cases and 36 deaths in a little more than one month, second only to Saudi Arabia in country-specific number of reported cases.Methods. We use a simple mathematical model, the Richards model, to trace the temporal course of the South Korea MERS-CoV outbreak. We pinpoint its outbreak turning point and its transmissibility via basic reproduction numberR0in order to ascertain the occurrence of this nosocomial outbreak and how it was quickly brought under control.Results. The estimated outbreak turning point ofti= 23.3 days (95% CI [22.6–24.0]), or 23–24 days after the onset date of the index case on May 11, pinpoints June 3–4 as the time of the turning point or the peak incidence for this outbreak by onset date.R0is estimated to range between 7.0 and 19.3.Discussion and Conclusion. The turning point of the South Korea MERS-CoV outbreak occurred around May 27–29, when control measures were quickly implemented after laboratory confirmation of the first cluster of nosocomial infections by the index patient. Furthermore, transmissibility of MERS-CoV in the South Korea outbreak was significantly higher than those reported from past MERS-CoV outbreaks in the Middle East, which is attributable to the nosocomial nature of this outbreak. Our estimate ofR0for the South Korea MERS-CoV nosocomial outbreak further highlights the importance and the risk involved in cluster infections and superspreading events in crowded settings such as hospitals. Similar to the 2003 SARS epidemic, outbreaks of infectious diseases with low community transmissibility like MERS-CoV could still occur initially with large clusters of nosocomial infections, but can be quickly and effectively controlled with timely intervention measures.


Author(s):  
Yuguo Li ◽  
Hua Qian ◽  
Jian Hang ◽  
Xuguang Chen ◽  
Ling Hong ◽  
...  

AbstractBackgroundThe role of aerosols in the transmission of SARS-CoV-2 remains debated. We analysed an outbreak involving three non-associated families in Restaurant X in Guangzhou, China, and assessed the possibility of aerosol transmission of SARS-CoV-2 and characterize the associated environmental conditions.MethodsWe collected epidemiological data, obtained a video record and a patron seating-arrangement from the restaurant, and measured the dispersion of a warm tracer gas as a surrogate for exhaled droplets from the suspected index patient. Computer simulations were performed to simulate the spread of fine exhaled droplets. We compared the in-room location of subsequently infected cases and spread of the simulated virus-laden aerosol tracer. The ventilation rate was measured using the tracer decay method.ResultsThree families (A, B, C), 10 members of which were subsequently found to have been infected with SARS-CoV-2 at this time, or previously, ate lunch at Restaurant X on Chinese New Year’s Eve (January 24, 2020) at three neighboring tables. Subsequently, three members of family B and two members of family C became infected with SARS-CoV-2, whereas none of the waiters or 68 patrons at the remaining 15 tables became infected. During this occasion, the ventilation rate was 0.75–1.04 L/s per person. No close contact or fomite contact was observed, aside from back-to-back sitting by some patrons. Our results show that the infection distribution is consistent with a spread pattern representative of exhaled virus-laden aerosols.ConclusionsAerosol transmission of SARS-CoV-2 due to poor ventilation may explain the community spread of COVID-19.


Pneumologie ◽  
2015 ◽  
Vol 69 (04) ◽  
Author(s):  
A Becher ◽  
J von Recum ◽  
K Schierhorn ◽  
T Wolff ◽  
M Tönnies ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document