scholarly journals The influence of visual and haptic material information on early grasping force

2019 ◽  
Vol 6 (3) ◽  
pp. 181563 ◽  
Author(s):  
Wouter M. Bergmann Tiest ◽  
Astrid M. L. Kappers

In this paper, we assess the importance of visual and haptic information about materials for scaling the grasping force when picking up an object. We asked 12 participants to pick up and lift objects with six different textures, either blindfolded or with visual information present. We measured the grip force and estimated the load force from the object’s weight and vertical acceleration. The coefficient of friction of the materials was measured separately. Already at an early phase in the grasp (before lift-off), the grip force correlated highly with the textures’ static coefficient of friction. However, no strong influence on the presence of visual information was found. We conclude that the main mechanism for modulation of grip force in the early phase of grasping is the real-time sensation of the texture’s friction.

2005 ◽  
Vol 93 (1) ◽  
pp. 137-145 ◽  
Author(s):  
Michael A. Smith ◽  
John F. Soechting

Subjects held an instrumented object in a tripod grasp and moved it in the horizontal plane in various directions. The contact forces at the digits were measured and the grip force was decomposed into 2 components: a manipulating force responsible for accelerating the object and a grasping force responsible for holding the object steady. The grasping forces increased during the movement, reaching a peak near the time of peak velocity. The grasping forces also exhibited directional tuning, but this tuning was idiosyncratic for each subject. Although the overall grip forces should be modulated with acceleration, the load force did not vary during the task. Therefore the increase in the grasping force is not required to prevent slip. Rather, it is suggested that grasping force increases during translational motion to stabilize the orientation of grasped objects.


1996 ◽  
Vol 75 (5) ◽  
pp. 1963-1969 ◽  
Author(s):  
G. Cadoret ◽  
A. M. Smith

1. Three men and seven women, 25-40 yr of age, were asked to use the thumb and index fingers to grasp, lift, and hold the armature of a linear motor generating a 2.0-N opposing force (simulating an object weighing approximately 200 g) for 2 s. The surface in contact with the fingers was composed of smooth or polyamide plastic etched with 1.0-mm high Braille beads separated at 2.0- or 3.0-mm intervals measured from apex to apex. The surfaces were left either untreated or coated with talc, water, or sucrose films designed to change the coefficient of friction with the skin. Talc reduced the coefficient of friction, whereas water and sucrose both increased the friction against the skin. In all, 12 surface conditions were used to evaluate the effects of texture and friction on the grip force during lifting and holding. 2. For all subjects the inverse coefficient of friction was associated with proportionately scaled increases in grip force, regardless of surface texture. The peak lifting force as well as the static force used to hold the object stationary were significantly correlated with the inverse of the coefficient of friction. When coatings were applied to dissimilar surface textures to produce similar coefficients of friction, the grip force profiles were nearly identical. When strong adhesives increased the friction of the smooth surface compared with textured surfaces, grip forces decreased as friction increased. That is, although the untreated smooth surface had less friction than either of the two textured surfaces, the addition of sucrose increased the smooth surface friction to a higher level than either of the similarly treated textured surfaces. As a result, the effect of surface friction could be dissociated from the effect of either surface texture or coating. Friction appears to be a more important factor in determining the grip force than either texture or surface films at least for the range of textures and coatings examined in this study.


2020 ◽  
Author(s):  
Hanna Kossowsky ◽  
Mor Farajian ◽  
Amit Milstein ◽  
Ilana Nisky

AbstractWhen interacting with objects, haptic information is used to create perception of the object stiffness and to regulate grip force. Studies have shown that introducing noise into sensory inputs can create uncertainty in those sensory channels, yet a method of creating haptic uncertainty without distorting the haptic information has yet to be discovered. Toward this end, we investigated the effect of between-probe haptic variability on stiffness perception and grip force control. In a stiffness discrimination task, we added different levels of between-probe haptic variability by changing the stiffness of the force fields between consecutive probes. Unlike the low and high variability levels, the medium level created perceptual haptic uncertainty. Additionally, we ascertained that participants calculated a weighted average of the different stiffness levels applied by a given force field. Examining participants’ grip force showed that the modulation of the grip force with the load force decreased with repeated exposure to the force field, whereas no change in the baseline was observed. These results were observed in all the variability levels and suggest that between-probe variability created haptic uncertainty that affected the grip force control. Overall, the medium variability level can be effective in inducing uncertainty in both perception and action.


Author(s):  
Goutam Chandra Karar ◽  
Nipu Modak

The experimental investigation of reciprocating motion between the aluminum doped crumb rubber /epoxy composite and the steel ball has been carried out under Reciprocating Friction Tester, TR-282 to study the wear and coefficient of frictions using different normal loads (0.4Kg, 0.7Kgand1Kg), differentfrequencies (10Hz, 25Hz and 40Hz).The wear is a function of normal load, reciprocating frequency, reciprocating duration and the composition of the material. The percentage of aluminum presents in the composite changesbut the other components remain the same.The four types of composites are fabricated by compression molding process having 0%, 10%, 20% and 30% Al. The effect of different parameters such as normal load, reciprocating frequency and percentage of aluminum has been studied. It is observed that the wear and coefficient of friction is influenced by the parameters. The tendency of wear goes on decreasing with the increase of normal load and it is minimum for a composite having 10%aluminum at a normal load of 0.7Kg and then goes on increasing at higher loads for all types of composite due to the adhesive nature of the composite. The coefficient of friction goes on decreasing with increasing normal loads due to the formation of thin film as an effect of heat generation with normal load.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Md Moin Uddin Atique ◽  
Joseph Thachil Francis

AbstractMirror Neurons (MNs) respond similarly when primates make or observe grasping movements. Recent work indicates that reward expectation influences rostral M1 (rM1) during manual, observational, and Brain Machine Interface (BMI) reaching movements. Previous work showed MNs are modulated by subjective value. Here we expand on the above work utilizing two non-human primates (NHPs), one male Macaca Radiata (NHP S) and one female Macaca Mulatta (NHP P), that were trained to perform a cued reward level isometric grip-force task, where the NHPs had to apply visually cued grip-force to move and transport a virtual object. We found a population of (S1 area 1–2, rM1, PMd, PMv) units that significantly represented grip-force during manual and observational trials. We found the neural representation of visually cued force was similar during observational trials and manual trials for the same units; however, the representation was weaker during observational trials. Comparing changes in neural time lags between manual and observational tasks indicated that a subpopulation fit the standard MN definition of observational neural activity lagging the visual information. Neural activity in (S1 areas 1–2, rM1, PMd, PMv) significantly represented force and reward expectation. In summary, we present results indicating that sensorimotor cortices have MNs for visually cued force and value.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4217
Author(s):  
Üsame Ali Usca ◽  
Mahir Uzun ◽  
Mustafa Kuntoğlu ◽  
Serhat Şap ◽  
Khaled Giasin ◽  
...  

Tribological properties of engineering components are a key issue due to their effect on the operational performance factors such as wear, surface characteristics, service life and in situ behavior. Thus, for better component quality, process parameters have major importance, especially for metal matrix composites (MMCs), which are a special class of materials used in a wide range of engineering applications including but not limited to structural, automotive and aeronautics. This paper deals with the tribological behavior of Cu-B-CrC composites (Cu-main matrix, B-CrC-reinforcement by 0, 2.5, 5 and 7.5 wt.%). The tribological characteristics investigated in this study are the coefficient of friction, wear rate and weight loss. For this purpose, four levels of sliding distance (1000, 1500, 2000 and 2500 m) and four levels of applied load (10, 15, 20 and 25 N) were used. In addition, two levels of sliding velocity (1 and 1.5 m/s), two levels of sintering time (1 and 2 h) and two sintering temperatures (1000 and 1050 °C) were used. Taguchi’s L16 orthogonal array was used to statistically analyze the aforementioned input parameters and to determine their best levels which give the desired values for the analyzed tribological characteristics. The results were analyzed by statistical analysis, optimization and 3D surface plots. Accordingly, it was determined that the most effective factor for wear rate, weight loss and friction coefficients is the contribution rate. According to signal-to-noise ratios, optimum solutions can be sorted as: the highest levels of parameters except for applied load and reinforcement ratio (2500 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 0 wt.%) for wear rate, certain levels of all parameters (1000 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 2.5 wt.%) for weight loss and 1000 m, 15 N, 1 m/s, 1 h, 1000 °C and 0 wt.% for the coefficient of friction. The comprehensive analysis of findings has practical significance and provides valuable information for a composite material from the production phase to the actual working conditions.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1246
Author(s):  
Stefan Valkov ◽  
Dimitar Dechev ◽  
Nikolay Ivanov ◽  
Ruslan Bezdushnyi ◽  
Maria Ormanova ◽  
...  

In this study, we present the results of Young’s modulus and coefficient of friction (COF) of Ti–Ta surface alloys formed by electron-beam surface alloying by a scanning electron beam. Ta films were deposited on the top of Ti substrates, and the specimens were then electron-beam surface alloyed, where the beam power was varied from 750 to 1750 W. The structure of the samples was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). Young’s modulus was studied by a nanoindentation test. The coefficient of friction was studied by a micromechanical wear experiment. It was found that at 750 W, the Ta film remained undissolved on the top of the Ti, and no alloyed zone was observed. By an increase in the beam power to 1250 and 1750 W, a distinguished alloyed zone is formed, where it is much thicker in the case of 1750 W. The structure of the obtained surface alloys is in the form of double-phase α’and β. In both surface alloys formed by a beam power of 1250 and 1750 W, respectively, Young’s modulus decreases about two times due to different reasons: in the case of alloying by 1250 W, the observed drop is attributed to the larger amount of the β phase, while at 1750 W is it due to the weaker binding forces between the atoms. The results obtained for the COF show that the formation of the Ti–Ta surface alloy on the top of Ti substrate leads to a decrease in the coefficient of friction, where the effect is more pronounced in the case of the formation of Ti–Ta surface alloys by a beam power of 1250 W.


2009 ◽  
Vol 35 (12) ◽  
pp. 2004 ◽  
Author(s):  
Jonathan Lee Bingham ◽  
Mariah R. Brown ◽  
Julian Ramsey Mellette

1966 ◽  
Vol 181 (1) ◽  
pp. 185-190 ◽  
Author(s):  
D. J. Lines ◽  
J. M. Lawrie ◽  
J. P. O'Donoghue

Although rotary shaft garter spring seals are widely used throughout industry, very little is known about the sealing mechanism of the lip-shaft interface. It is now generally accepted that some sort of fluid film separates the lip and the shaft. Previous workers have also postulated a relationship between the coefficient of friction and a non-dimensional hydrodynamic parameter, as in standard lubrication theory. This present paper clarifies this relationship, and shows that seals can also operate over the mixed friction, as well as the full film lubrication region. The results were obtained by accurate knowledge of the operating temperature under the sealing lip. Two types of surface thermocouple were developed to do this and these are described in full.


Sign in / Sign up

Export Citation Format

Share Document