scholarly journals Influence of polydimethylsiloxane substrate stiffness on corneal epithelial cells

2019 ◽  
Vol 6 (12) ◽  
pp. 191796 ◽  
Author(s):  
Sophia Masterton ◽  
Mark Ahearne

Many cell types are known to modulate their behaviour in response to changes in material stiffness; however, little is known about how stiffness affects corneal epithelial cells. This study aims to investigate the response of a corneal epithelial cell line to polydimethylsiloxane (PDMS) substrates with a range of Young's moduli from 10 to 1500 kPa. Cellular morphology, proliferation, differentiation and mechanobiology were examined. Cells grown on PDMS adopted the typical cobblestone morphology exhibited by the corneal epithelium. Proliferative markers pERK and Ki67 were higher in cells cultured on stiffer substrates compared with those on softer substrates. Material stiffness was also found to influence the cell phenotype with cells on stiffer substrates having higher cytokeratin 3 gene expression, a mature epithelial marker, while cells on softer substrates expressed more cytokeratin 14, a basal epithelial marker. Cells grown on softer substrates also displayed higher levels of focal adhesions and intermediate filaments compared with cells on stiff substrates. This research will aid in designing novel biomaterials for the culture and transplantation of corneal epithelial cells.

BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Divya Arunachalam ◽  
Shruthi Mahalakshmi Ramanathan ◽  
Athul Menon ◽  
Lekshmi Madhav ◽  
Gopalakrishna Ramaswamy ◽  
...  

Abstract Background Aspergillus flavus, one of the causative agents of human fungal keratitis, can be phagocytosed by human corneal epithelial (HCE) cells and the conidia containing phagosomes mature into phagolysosomes. But the immunological responses of human corneal epithelial cells interacting with A. flavus are not clear. In this study, we report the expression of immune response related genes of HCE cells exposed to A. flavus spores using targeted transcriptomics. Methods Human corneal epithelial cell line and primary cultures were grown in a six-well plate and used for coculture experiments. Internalization of the conidia was confirmed by immunofluorescence microscopy of the colocalized endosomal markers CD71 and LAMP1. Total RNA was isolated, and the quantity and quality of the isolated RNA were assessed using Qubit and Bioanalyzer. NanoString nCounter platform was used for the analysis of mRNA abundance using the Human Immunology panel. R-package and nSolver software were used for data analysis. KEGG and FunRich 3.1.3 tools were used to analyze the differentially expressed genes. Results Different morphotypes of conidia were observed after 6 h of coculture with human corneal epithelial cells and found to be internalized by epithelial cells. NanoString profiling showed more than 20 differentially expressed genes in immortalized human corneal epithelial cell line and more than ten differentially expressed genes in primary corneal epithelial cells. Distinct set of genes were altered in their expression in cell line and primary corneal epithelial cells. KEGG pathway analysis revealed that genes associated with TNF signaling, NF-KB signaling, and Th17 signaling were up-regulated, and genes associated with chemokine signaling and B cell receptor signaling were down regulated. FunRich pathway analysis showed that pathways such as CDC42 signaling, PI3K signaling, and Arf6 trafficking events were activated by the clinical isolates CI1123 and CI1698 in both type of cells. Conclusions Combining the transcript analysis data from cell lines and primary cultures, we showed the up regulation of immune defense genes in A. flavus infected cells. At the same time, chemokine signaling and B cell signaling pathways are downregulated. The variability in the expression levels in the immortalized cell line and the primary cultures is likely due to the variable epigenetic reprogramming in the immortalized cells and primary cultures in the absence of any changes in the genome. It highlights the importance of using both cell types in host-pathogen interaction studies.


2016 ◽  
Vol 3 (10) ◽  
pp. 160658 ◽  
Author(s):  
Amy S. Findlay ◽  
D. Alessio Panzica ◽  
Petr Walczysko ◽  
Amy B. Holt ◽  
Deborah J. Henderson ◽  
...  

This study shows that the core planar cell polarity (PCP) genes direct the aligned cell migration in the adult corneal epithelium, a stratified squamous epithelium on the outer surface of the vertebrate eye. Expression of multiple core PCP genes was demonstrated in the adult corneal epithelium. PCP components were manipulated genetically and pharmacologically in human and mouse corneal epithelial cells in vivo and in vitro . Knockdown of VANGL2 reduced the directional component of migration of human corneal epithelial (HCE) cells without affecting speed. It was shown that signalling through PCP mediators, dishevelled, dishevelled-associated activator of morphogenesis and Rho-associated protein kinase directs the alignment of HCE cells by affecting cytoskeletal reorganization. Cells in which VANGL2 was disrupted tended to misalign on grooved surfaces and migrate across, rather than parallel to the grooves. Adult corneal epithelial cells in which Vangl2 had been conditionally deleted showed a reduced rate of wound-healing migration. Conditional deletion of Vangl2 in the mouse corneal epithelium ablated the normal highly stereotyped patterns of centripetal cell migration in vivo from the periphery (limbus) to the centre of the cornea. Corneal opacity owing to chronic wounding is a major cause of degenerative blindness across the world, and this study shows that Vangl2 activity is required for directional corneal epithelial migration.


Glycobiology ◽  
2020 ◽  
Vol 30 (11) ◽  
pp. 872-880 ◽  
Author(s):  
Nicole M McColgan ◽  
Marissa N Feeley ◽  
Ashley M Woodward ◽  
Damien Guindolet ◽  
Pablo Argüeso

Abstract Dynamic modification of nuclear and cytoplasmic proteins with O-linked β-N-acetylglucosamine (O-GlcNAc) plays an important role in orchestrating the transcriptional activity of eukaryotic cells. Here, we report that the O-GlcNAc modification contributes to maintaining ocular surface epithelial homeostasis by promoting mucin biosynthesis and barrier function. We found that induction of human corneal epithelial cell differentiation stimulated the global transfer of O-GlcNAc to both nuclear and cytosolic proteins. Inflammatory conditions, on the other hand, were associated with a reduction in the expression of O-GlcNAc transferase at the ocular surface epithelia. Loss- and gain-of-function studies using small interfering RNA targeting O-GlcNAc transferase, or Thiamet G, a selective inhibitor of O-GlcNAc hydrolase, respectively, revealed that the presence of O-GlcNAc was necessary to promote glycocalyx barrier function. Moreover, we found that Thiamet G triggered a correlative increase in both surface expression of MUC16 and apical epithelial cell area while reducing paracellular permeability. Collectively, these results identify intracellular protein O-glycosylation as a novel pathway responsible for promoting the terminal differentiation of human corneal epithelial cells.


2019 ◽  
Vol 10 (3) ◽  
pp. 35 ◽  
Author(s):  
Tummala ◽  
Lopes ◽  
Mihranyan ◽  
Ferraz

Transparent composite hydrogel in the form of a contact lens made from poly(vinyl alcohol) (PVA) and cellulose nanocrystals (CNCs) was subjected to in vitro biocompatibility evaluation with human corneal epithelial cells (HCE-2 cells). The cell response to direct contact with the hydrogels was investigated by placing the samples on top of confluent cell layers and evaluating cell viability, morphology, and cell layer integrity subsequent to 24 h culture and removal of the hydrogels. To further characterize the lens–cell interactions, HCE-2 cells were seeded on the hydrogels, with and without simulated tear fluid (STF) pre-conditioning, and cell viability and morphology were evaluated. Furthermore, protein adsorption on the hydrogel surface was investigated by incubating the materials with STF, followed by protein elution and quantification. The hydrogel material was found to have affinity towards protein adsorption, most probably due to the interactions between the positively charged lysozyme and the negatively charged CNCs embedded in the PVA matrix. The direct contact experiment demonstrated that the physical presence of the lenses did not affect corneal epithelial cell monolayers in terms of integrity nor cell metabolic activity. Moreover, it was found that viable corneal cells adhered to the hydrogel, showing the typical morphology of epithelial cells and that such response was not influenced by the STF pre-conditioning of the hydrogel surface. The results of the study confirm that PVA-CNC hydrogel is a promising ophthalmic biomaterial, motivating future in vitro and in vivo biocompatibility studies.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Jing Zhong ◽  
Yuqing Deng ◽  
Bishan Tian ◽  
Bowen Wang ◽  
Yifang Sun ◽  
...  

Purpose. To evaluate the effects and mechanism of exogenous hyaluronate (HA) in promoting corneal wound healing.Methods. Human corneal epithelial cells (HCECs) were incubated with different concentrations of HA to evaluate their efficiency in promoting cell migration and their modulation of repair factors. After inducing hyperosmolar conditions, the cell morphologies, cell apoptosis, and expression levels of TNF-αand MMP-9 were detected to assess the protective role of HA. Corneal epithelium-injured rat models were established to test the therapeutic effects of 0.3% HA. Then, the wound healing rates, the RNA expression levels of inflammatory cytokines, and repair factors were examined.Results. HCECs in the 0.03% and 0.3% HA groups showed fewer morphological alterations and lower rates of cell apoptosis following preincubation with HA under hyperosmolar conditions, as well as the expression levels of MMP-9 and TNF-α. In the rat model, the areas of fluorescein staining in the corneas of 0.3% HA group were significantly smaller than the control group. The expression levels of IL-1βand MMP-9 were decreased, while CD44 and FN were increased in the 0.3% HA group.Conclusion. HA enhanced corneal epithelial cell wound healing by promoting cell migration, upregulating repair responses, and suppressing inflammatory responses.


2006 ◽  
Vol 190 (2) ◽  
pp. 483-493 ◽  
Author(s):  
Claire U Onyimba ◽  
Neelima Vijapurapu ◽  
S John Curnow ◽  
Pamela Khosla ◽  
Paul M Stewart ◽  
...  

The prereceptor regulation of glucocorticoids (GCs) by 11β-hydroxysteroid dehydrogenase type-1 (11β-HSD1), a bidirectional isozyme that interconverts active (cortisol) and inactive (cortisone) GCs, is an established determinant of GC function in tissues such as liver, adipose and bone. Although the therapeutic use of GCs is abundant in ophthalmic practice, where GC interactions with nuclear receptors modulate gene transcription, the prereceptor regulation of endogenous cortisol is not well described in ocular tissues. Recent descriptive studies have localised 11β-HSD1 to the human corneal epithelium and non-pigmented epithelium (NPE) of the ciliary body, indicating a link to corneal epithelial physiology and aqueous humour production. In this study, we characterise the functional aspects of the autocrine regulation of GCs in the anterior segment of the rabbit eye. Using our in-house generated primary antibody to human 11β-HSD1, immunohistochemical analyses were performed on paraffin-embedded sections of whole New Zealand white albino rabbits, (NZWAR) eyes. As in human studies, 11β-HSD1 was localised to the corneal epithelium and the NPE. No staining was seen in the albino ‘pigmented’ ciliary epithelium. Specific enzyme assays for oxo-reductase (cortisone→cortisol) and dehydrogenase (cortisol→cortisone) activity indicated predominant 11β-HSD1 oxo-reductase activity from both the intact ciliary body tissue (n=12, median 2.1 pmol/mg per h and range 1.25–2.8 pmol/mg per h; P=0.006) and primary cultures of corneal epithelial cells (n=12, median 3.0 pmol/mg per h and range 1.0–7.4 pmol/mg per h, P=0.008) compared with dehydrogenase activity (median 1.0 pmol/mg per h and range 0.5–2.0 pmol/mg per h; median 0.5 pmol/mg per h and range 0.25–1.9 pmol/mg per h respectively). These findings were supported by expression of 11β-HSD1 protein as visualised by Western blotting of ciliary body tissue and immunocytochemistry of corneal epithelial cells. Reduction of corneal epithelial cell proliferation was seen after primary cultures were co-incubated with cortisol and cortisone. 11β-HSD1 activity was not demonstrated in naïve conjunctival fibroblasts or corneal stromal keratocytes. Our results indicate that the distribution of 11β-HSD1 in the rabbit resembles that of the human eye and activates cortisone to cortisol in both corneal and uveal tissues. The NZWAR provides a suitable in vivo model for the further evaluation of 11β-HSD1 activity in the eye, especially its role in corneal epithelial and ciliary body physiology.


1999 ◽  
Vol 67 (3) ◽  
pp. 1481-1492 ◽  
Author(s):  
Tanweer S. Zaidi ◽  
Jeffrey Lyczak ◽  
Michael Preston ◽  
Gerald B. Pier

ABSTRACT Previous findings indicate that the cystic fibrosis transmembrane conductance regulator (CFTR) is a ligand for Pseudomonas aeruginosa ingestion into respiratory epithelial cells. In experimental murine keratitis, P. aeruginosa enters corneal epithelial cells. We determined the importance of CFTR-mediated uptake of P. aeruginosa by corneal cells in experimental eye infections. Entry of noncytotoxic (exoU) P. aeruginosa into human and rabbit corneal cell cultures was inhibited with monoclonal antibodies and peptides specific to CFTR amino acids 108 to 117. Immunofluorescence microscopy and flow cytometry demonstrated CFTR in the intact murine corneal epithelium, and electron microscopy showed that CFTR binds to P. aeruginosa following corneal cell ingestion. In experimental murine eye infections, multiple additions of 5 nM CFTR peptide 103-117 to inocula of either cytotoxic (exoU +) or noncytotoxic P. aeruginosa resulted in large reductions in bacteria in the eye and markedly lessened eye pathology. Compared with wild-type C57BL/6 mice, heterozygous ΔF508 Cftr mice infected with P. aeruginosa had an approximately 10-fold reduction in bacterial levels in the eye and consequent reductions in eye pathology. Homozygous ΔF508 Cftr mice were nearly completely resistant to P. aeruginosa corneal infection. CFTR-mediated internalization of P. aeruginosa by buried corneal epithelial cells is critical to the pathogenesis of experimental eye infection, while in the lung, P. aeruginosa uptake by surface epithelial cells enhances P. aeruginosa clearance from this tissue.


2020 ◽  
Author(s):  
Hui Zhu ◽  
Wei Wang ◽  
Lingjuan Xu ◽  
Menglin Jiang ◽  
Yongyao Tan ◽  
...  

ABSTRACTPurposeTo investigate the possibility and the key factors of stably committed mature corneal epithelial cells dedifferentiate into corneal epithelial stem cells in vitro.MethodsMature cornea epithelia cell (MCEC) sheets or limbal epithelial progenitor cell (LEPC) sheets were isolated from central corneas or limbal segments by Dispase II and further digested with 0.25% trypsin/1 mM EDTA (T/E) to yield single cells. Limbal niche cells (LNC) were isolated from the limbal stroma by collagenase A and expanded on 5% Matrigel coated plastic. Single MCECs were seeded on 50% Matrigel with or without LNC culturing for 10 days, regarding as three-dimensional MCEC (3D-MCEC) group or three-dimensional MCEC+LNC (3D-MCEC+LNC) group. Expression of CK12, p63α, PCK, Vimentin were analyzed with immunofluorescence staining.ResultsThe expression of mature cornea epithelial marker (CK12) in MCEC was higher than that in LEPC (P=0.020) but epithelial stem cell marker (p63α) was lower than that in LEPC (P=0.000). When seeded in 3D Matrigel, single MCEC cells could form spheres within 72 hours, and the expression of CK12 reduced (P=0.005) and the expression of p63α also reduced to zero (P=0.000) compared to MCEC. Serial passages of LNC which were expanded in coated Matrigel could form spheres in 3D Matrigel. After mixing MCECs with LNC, rounder spheres emerged within 24 hours which consisted of both epithelia cells (PCK+/Vim-) and LNC (PCK-/Vim+). Moreover, epithelia cells in 3D-MCEC+LNC group expressed less CK12 and more p63α than those in MCEC group (P=0.043, 0.000). Besides, the diameter of spheres in 3D-MCEC+LNC group were larger than that in 3D-MCEC group (P=0.000).ConclusionHuman LNC and three-dimensional Matrigel could induce the dedifferentiation of mature corneal epithelial cells into corneal epithelial stem cells.


2000 ◽  
Vol 68 (1) ◽  
pp. 403-406 ◽  
Author(s):  
Brigitte A. Cowell ◽  
David Y. Chen ◽  
Dara W. Frank ◽  
Amy J. Vallis ◽  
Suzanne M. J. Fleiszig

ABSTRACT The presence of invasion-inhibitory activity that is regulated by the transcriptional activator ExsA of cytotoxic Pseudomonas aeruginosa has previously been proposed. The results of this study show that both ExoT and ExoS, known type III secreted effector proteins of P. aeruginosa that are regulated by ExsA, possess this activity. Invasion was reduced 94.4% by ExoT and 96.0% by ExoS. Invasion-inhibitory activity is not linked to ADP-ribosylation activity, at least for ExoS, since a noncatalytic mutant also inhibits uptake by an epithelial cell line (invasion was reduced 96.0% by ExoSE381A).


Sign in / Sign up

Export Citation Format

Share Document