scholarly journals Expression of immune response genes in human corneal epithelial cells interacting with Aspergillus flavus conidia

BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Divya Arunachalam ◽  
Shruthi Mahalakshmi Ramanathan ◽  
Athul Menon ◽  
Lekshmi Madhav ◽  
Gopalakrishna Ramaswamy ◽  
...  

Abstract Background Aspergillus flavus, one of the causative agents of human fungal keratitis, can be phagocytosed by human corneal epithelial (HCE) cells and the conidia containing phagosomes mature into phagolysosomes. But the immunological responses of human corneal epithelial cells interacting with A. flavus are not clear. In this study, we report the expression of immune response related genes of HCE cells exposed to A. flavus spores using targeted transcriptomics. Methods Human corneal epithelial cell line and primary cultures were grown in a six-well plate and used for coculture experiments. Internalization of the conidia was confirmed by immunofluorescence microscopy of the colocalized endosomal markers CD71 and LAMP1. Total RNA was isolated, and the quantity and quality of the isolated RNA were assessed using Qubit and Bioanalyzer. NanoString nCounter platform was used for the analysis of mRNA abundance using the Human Immunology panel. R-package and nSolver software were used for data analysis. KEGG and FunRich 3.1.3 tools were used to analyze the differentially expressed genes. Results Different morphotypes of conidia were observed after 6 h of coculture with human corneal epithelial cells and found to be internalized by epithelial cells. NanoString profiling showed more than 20 differentially expressed genes in immortalized human corneal epithelial cell line and more than ten differentially expressed genes in primary corneal epithelial cells. Distinct set of genes were altered in their expression in cell line and primary corneal epithelial cells. KEGG pathway analysis revealed that genes associated with TNF signaling, NF-KB signaling, and Th17 signaling were up-regulated, and genes associated with chemokine signaling and B cell receptor signaling were down regulated. FunRich pathway analysis showed that pathways such as CDC42 signaling, PI3K signaling, and Arf6 trafficking events were activated by the clinical isolates CI1123 and CI1698 in both type of cells. Conclusions Combining the transcript analysis data from cell lines and primary cultures, we showed the up regulation of immune defense genes in A. flavus infected cells. At the same time, chemokine signaling and B cell signaling pathways are downregulated. The variability in the expression levels in the immortalized cell line and the primary cultures is likely due to the variable epigenetic reprogramming in the immortalized cells and primary cultures in the absence of any changes in the genome. It highlights the importance of using both cell types in host-pathogen interaction studies.

Glycobiology ◽  
2020 ◽  
Vol 30 (11) ◽  
pp. 872-880 ◽  
Author(s):  
Nicole M McColgan ◽  
Marissa N Feeley ◽  
Ashley M Woodward ◽  
Damien Guindolet ◽  
Pablo Argüeso

Abstract Dynamic modification of nuclear and cytoplasmic proteins with O-linked β-N-acetylglucosamine (O-GlcNAc) plays an important role in orchestrating the transcriptional activity of eukaryotic cells. Here, we report that the O-GlcNAc modification contributes to maintaining ocular surface epithelial homeostasis by promoting mucin biosynthesis and barrier function. We found that induction of human corneal epithelial cell differentiation stimulated the global transfer of O-GlcNAc to both nuclear and cytosolic proteins. Inflammatory conditions, on the other hand, were associated with a reduction in the expression of O-GlcNAc transferase at the ocular surface epithelia. Loss- and gain-of-function studies using small interfering RNA targeting O-GlcNAc transferase, or Thiamet G, a selective inhibitor of O-GlcNAc hydrolase, respectively, revealed that the presence of O-GlcNAc was necessary to promote glycocalyx barrier function. Moreover, we found that Thiamet G triggered a correlative increase in both surface expression of MUC16 and apical epithelial cell area while reducing paracellular permeability. Collectively, these results identify intracellular protein O-glycosylation as a novel pathway responsible for promoting the terminal differentiation of human corneal epithelial cells.


2019 ◽  
Vol 10 (3) ◽  
pp. 35 ◽  
Author(s):  
Tummala ◽  
Lopes ◽  
Mihranyan ◽  
Ferraz

Transparent composite hydrogel in the form of a contact lens made from poly(vinyl alcohol) (PVA) and cellulose nanocrystals (CNCs) was subjected to in vitro biocompatibility evaluation with human corneal epithelial cells (HCE-2 cells). The cell response to direct contact with the hydrogels was investigated by placing the samples on top of confluent cell layers and evaluating cell viability, morphology, and cell layer integrity subsequent to 24 h culture and removal of the hydrogels. To further characterize the lens–cell interactions, HCE-2 cells were seeded on the hydrogels, with and without simulated tear fluid (STF) pre-conditioning, and cell viability and morphology were evaluated. Furthermore, protein adsorption on the hydrogel surface was investigated by incubating the materials with STF, followed by protein elution and quantification. The hydrogel material was found to have affinity towards protein adsorption, most probably due to the interactions between the positively charged lysozyme and the negatively charged CNCs embedded in the PVA matrix. The direct contact experiment demonstrated that the physical presence of the lenses did not affect corneal epithelial cell monolayers in terms of integrity nor cell metabolic activity. Moreover, it was found that viable corneal cells adhered to the hydrogel, showing the typical morphology of epithelial cells and that such response was not influenced by the STF pre-conditioning of the hydrogel surface. The results of the study confirm that PVA-CNC hydrogel is a promising ophthalmic biomaterial, motivating future in vitro and in vivo biocompatibility studies.


2006 ◽  
Vol 190 (2) ◽  
pp. 483-493 ◽  
Author(s):  
Claire U Onyimba ◽  
Neelima Vijapurapu ◽  
S John Curnow ◽  
Pamela Khosla ◽  
Paul M Stewart ◽  
...  

The prereceptor regulation of glucocorticoids (GCs) by 11β-hydroxysteroid dehydrogenase type-1 (11β-HSD1), a bidirectional isozyme that interconverts active (cortisol) and inactive (cortisone) GCs, is an established determinant of GC function in tissues such as liver, adipose and bone. Although the therapeutic use of GCs is abundant in ophthalmic practice, where GC interactions with nuclear receptors modulate gene transcription, the prereceptor regulation of endogenous cortisol is not well described in ocular tissues. Recent descriptive studies have localised 11β-HSD1 to the human corneal epithelium and non-pigmented epithelium (NPE) of the ciliary body, indicating a link to corneal epithelial physiology and aqueous humour production. In this study, we characterise the functional aspects of the autocrine regulation of GCs in the anterior segment of the rabbit eye. Using our in-house generated primary antibody to human 11β-HSD1, immunohistochemical analyses were performed on paraffin-embedded sections of whole New Zealand white albino rabbits, (NZWAR) eyes. As in human studies, 11β-HSD1 was localised to the corneal epithelium and the NPE. No staining was seen in the albino ‘pigmented’ ciliary epithelium. Specific enzyme assays for oxo-reductase (cortisone→cortisol) and dehydrogenase (cortisol→cortisone) activity indicated predominant 11β-HSD1 oxo-reductase activity from both the intact ciliary body tissue (n=12, median 2.1 pmol/mg per h and range 1.25–2.8 pmol/mg per h; P=0.006) and primary cultures of corneal epithelial cells (n=12, median 3.0 pmol/mg per h and range 1.0–7.4 pmol/mg per h, P=0.008) compared with dehydrogenase activity (median 1.0 pmol/mg per h and range 0.5–2.0 pmol/mg per h; median 0.5 pmol/mg per h and range 0.25–1.9 pmol/mg per h respectively). These findings were supported by expression of 11β-HSD1 protein as visualised by Western blotting of ciliary body tissue and immunocytochemistry of corneal epithelial cells. Reduction of corneal epithelial cell proliferation was seen after primary cultures were co-incubated with cortisol and cortisone. 11β-HSD1 activity was not demonstrated in naïve conjunctival fibroblasts or corneal stromal keratocytes. Our results indicate that the distribution of 11β-HSD1 in the rabbit resembles that of the human eye and activates cortisone to cortisol in both corneal and uveal tissues. The NZWAR provides a suitable in vivo model for the further evaluation of 11β-HSD1 activity in the eye, especially its role in corneal epithelial and ciliary body physiology.


Development ◽  
1986 ◽  
Vol 94 (1) ◽  
pp. 163-172
Author(s):  
Marian G. Langer ◽  
C. V. Sundarraj ◽  
Nirmala Sundarraj

Monoclonal antibodies, specific against cell surface differentiation antigens of human corneal epithelial cells, were developed using epithelial cells resected from human corneas as the immunogens. One of these antibodies reacted specifically with corneal epithelial cells and not with epithelial cells of other tissues when tested by an indirect immunoperoxidase technique. Nonidet P-40 extracts of different subcellular fractions of human corneal epithelial cells were tested for their reactivity against this antibody using an enzyme-linked immunosorbent assay. The results indicated that the antigen recognized by this antibody is associated with the plasma membrane. This was further verified by immuno-electron-microscopic analysis using ferritin-conjugated anti-mouse IgG antibody. This antigen was not detectable in the corneal epithelial cells in primary cultures nor in the epithelial cells from early stages of developing cornea (12 to 18 weeks in utero) but was present in the epithelial cells in the corneas of an 8-month-old infant. Therefore, this surface-associated antigen identified in the present study is a developmentally regulated marker of human corneal epithelium.


2019 ◽  
Vol 6 (12) ◽  
pp. 191796 ◽  
Author(s):  
Sophia Masterton ◽  
Mark Ahearne

Many cell types are known to modulate their behaviour in response to changes in material stiffness; however, little is known about how stiffness affects corneal epithelial cells. This study aims to investigate the response of a corneal epithelial cell line to polydimethylsiloxane (PDMS) substrates with a range of Young's moduli from 10 to 1500 kPa. Cellular morphology, proliferation, differentiation and mechanobiology were examined. Cells grown on PDMS adopted the typical cobblestone morphology exhibited by the corneal epithelium. Proliferative markers pERK and Ki67 were higher in cells cultured on stiffer substrates compared with those on softer substrates. Material stiffness was also found to influence the cell phenotype with cells on stiffer substrates having higher cytokeratin 3 gene expression, a mature epithelial marker, while cells on softer substrates expressed more cytokeratin 14, a basal epithelial marker. Cells grown on softer substrates also displayed higher levels of focal adhesions and intermediate filaments compared with cells on stiff substrates. This research will aid in designing novel biomaterials for the culture and transplantation of corneal epithelial cells.


2000 ◽  
Vol 68 (1) ◽  
pp. 403-406 ◽  
Author(s):  
Brigitte A. Cowell ◽  
David Y. Chen ◽  
Dara W. Frank ◽  
Amy J. Vallis ◽  
Suzanne M. J. Fleiszig

ABSTRACT The presence of invasion-inhibitory activity that is regulated by the transcriptional activator ExsA of cytotoxic Pseudomonas aeruginosa has previously been proposed. The results of this study show that both ExoT and ExoS, known type III secreted effector proteins of P. aeruginosa that are regulated by ExsA, possess this activity. Invasion was reduced 94.4% by ExoT and 96.0% by ExoS. Invasion-inhibitory activity is not linked to ADP-ribosylation activity, at least for ExoS, since a noncatalytic mutant also inhibits uptake by an epithelial cell line (invasion was reduced 96.0% by ExoSE381A).


2001 ◽  
Vol 114 (22) ◽  
pp. 4033-4040
Author(s):  
Miechia A. Esco ◽  
Zhiyu Wang ◽  
Mark L. McDermott ◽  
Michelle Kurpakus-Wheater

Laminin 5 functions to promote cell-matrix adhesion and therefore is hypothesized to abrogate apoptosis initiated through the loss of epithelial cell contact with extracellular matrix. Laminin 5 levels are decreased in epithelial cells cultured in a hypoxic environment. Exposure of epithelial cells to hypoxia may induce apoptotic pathways transmitted through changes in mitochondrial membrane potential. Using an apoptosis assay based on mitochondrial membrane integrity, the effect of hypoxia (2% oxygen) on human corneal epithelial cell viability was determined. Both a virally transformed corneal epithelial cell line and third passage corneal epithelial cells were resistant to hypoxia-mediated apoptosis for up to 5 days in culture. However, at 7 days in culture, a statistically significant increase in apoptosis was noted in hypoxic corneal epithelial cells compared to normoxic (20% oxygen) controls. Increased apoptosis in hypoxic epithelium at 7 days in culture correlated with decreased deposition of laminin 5 into the extracellular matrix, as determined by western blot analysis and immunofluorescence microscopy. Additionally, the extracellular processing of the α3 and γ2 chains of laminin 5 was negatively impacted by corneal epithelial cell exposure to hypoxia for 7 days. Treatment of human corneal epithelial cells cultured in 20% oxygen with function-inhibiting antibodies to laminin 5 for 2 or 3 days resulted in a statistically significant decrease in proliferation, and concomitant increase in apoptosis, compared with untreated normoxic controls. Based on these results, it appears that mechanisms of hypoxia-mediated apoptosis in human corneal epithelial cells may be initiated by the loss of processed laminin 5 in the extracellular matrix or by the loss of laminin 5-epithelial cell communication and transmitted through mitochondria.


Sign in / Sign up

Export Citation Format

Share Document