scholarly journals Aqueous Dried Extract of Skytanthus acutus Meyen as Corrosion Inhibitor of Carbon Steel in Neutral Chloride Solutions

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1992
Author(s):  
Luis Cáceres ◽  
Yohana Frez ◽  
Felipe Galleguillos ◽  
Alvaro Soliz ◽  
Benito Gómez-Silva ◽  
...  

The implementation of corrosion engineering control methods and techniques is crucial to extend the life of urban and industrial infrastructure assets and industrial equipment affected by natural corrosion. Then, the search of stable and environmentally friendly corrosion inhibitors is an important pending task. Here, we provide experimental evidence on the corrosion inhibitory activity of aqueous extracts of Skytanthus acutus Meyen leaf, a native plant from the Atacama Desert in northern Chile. Skytanthus extracts as a powder should be prepared at 55 °C to avoid thermal decomposition and loss of corrosion inhibitory activity. Corrosion of carbon steel AISI1020 immersed in 0.5 M NaCl was evaluated in the presence of different doses of Skytanthus extract by complementary and simultaneous linear polarization, electrochemical impedance spectroscopy, and weight-loss technique under high hydrodynamic conditions. Mixed Potential Theory was applied to confirm the electrochemical activity of the extract inhibitory capabilities. The Skytanthus extracts reached a 90% corrosion inhibitory efficiency when tested at 100 to 1200 ppm in a time span of 48 h, through an electrochemical interaction between the extract inhibitor component and the carbon steel surface. The corrosion inhibition activity observed in Skytanthus dry extracts involves a protective film formation by a mechanism that includes an iron dissolution at the expense of either oxygen reduction and/or hydrogen evolution, followed by a ferrous-ferric iron cycling, the formation of an iron complex and adsorption to the metal surface, and, finally, desorption or degradation of the protecting film. The water-soluble plant extract was subjected to HPLC-MS analyses that rendered 14 major signals, with quinic acid, protocatechuic acid, chlorogenic acid isomers, vanillic acid hexoside, and patuletin 3-methoxy-7-glucoside as the most abundant components. Then, we propose that a phenolic derivative is responsible for the corrosion inhibitory activity found in Skytanthus extracts.

Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 106
Author(s):  
Akbar Ali Samsath Begum ◽  
Raja Mohamed Abdul Vahith ◽  
Vijay Kotra ◽  
Mohammed Rafi Shaik ◽  
Abdelatty Abdelgawad ◽  
...  

In the present study, the corrosion inhibition effect of Spilanthes acmella aqueous leaves extract (SA-LE) on mild steel was investigated in 1.0 M HCl solution at different temperature using weight loss, Tafel polarization, linear polarization resistance (LPR), and electrochemical impedance (EIS) measurements. Adsorption of inhibitor on the surface of the mild steel obeyed both Langmuir and Temkin adsorption isotherms. The thermodynamic and kinetic parameters were also calculated to determine the mechanism of corrosion inhibition. The inhibition efficiency was found to increase with an increase in the inhibitor concentration i.e., Spilanthes acmella aqueous leaves extract, however, the inhibition efficiency decreased with an increase in the temperature. The phytochemical constituents with functional groups including electronegative hetero atoms such as N, O, and S in the extract adsorbed on the metal surface are found responsible for the effective performance of the inhibitor, which was confirmed by Fourier-transform infrared spectroscopy (FT-IR) and ultraviolet–visible spectroscopic (UV-Vis) studies. Protective film formation against corrosion was confirmed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle studies. The result shows that the leaves extract acts as corrosion inhibitor and is able to promote surface protection by blocking active sites on the metal.


2020 ◽  
Vol 1012 ◽  
pp. 390-394
Author(s):  
C. Vieira ◽  
D. Borges ◽  
D.C.S. Oliszeski ◽  
L.F.G. Larsson ◽  
E.P. Banczek

Carbon steel is one of the most commonly used alloys in industrial applications due to its physicochemical properties and low cost. However, the use of this metal material may become limited due to its vulnerability to corrosion. Thus, it is necessary to use methods that inhibit corrosion. Organic compounds with heteroatoms possess the characteristic of inhibiting corrosion by forming a protective film. The corrosion protection of SAE 1020 carbon steel, promoted by the aqueous extract of Persea pyrifolia (PP) bark, was evaluated in this work at extract concentrations of 5% and 10% v/v, in order to replace an inhibitor of synthetic origin with an ecologically benign inhibitor. Plant extracts are generally inexpensive and can be obtained through simple extraction processes. The objective of this work was to study the use of PP peel extract as a carbon steel corrosion inhibitor (SAE 1020). The electrochemical response was determined by measurements including electrochemical impedance spectroscopy (EIS) and anodic potentiodynamic polarization (PPA) in a 0.5 M sodium chloride medium. The samples were characterized by optical microscopy to evaluate the type of corrosion.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
J. C. Valle-Quitana ◽  
G. F. Dominguez-Patiño ◽  
J. G. Gonzalez-Rodriguez

Phthalocyanine blue dye has been investigated as a carbon steel corrosion inhibitor in 0.5 M sulfuric acid by using polarization curves, electrochemical impedance spectroscopy, and gravimetric tests. Dye concentrations included 0, 100, 200, 400, 600, 800, and 1000 ppm, whereas testing temperatures were 25, 40, and 60°C. Results indicated that phtalocyanine blue is a good corrosion inhibitor with its efficiency increasing with the concentration up to 40°C, but it increases at 60°C. Inhibitor improves the passive film properties and it forms an adherent, compact, protective film, acting, therefore, as an anodic-type inhibitor. At 25 and 40°C the corrosion process was under charge transfer, whereas at 60°C the adsorption/desorption of some species from the metal surface controlled the corrosion process.


2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
G. Chan-Rosado ◽  
M. A. Pech-Canul

The inhibition effect of sodium glutarate towards corrosion of carbon steel in neutral 0.02 M NaCl solution was investigated with potentiodynamic polarization and electrochemical impedance measurements. Results of electrochemical measurements revealed a poor inhibitive action for low concentrations (1 mM and 5 mM) and a significant improvement in efficiency for concentrations of 32 mM or higher. The protective film exhibited excellent stability in the temperature range 22°C–55°C. Full chemical passivation was accomplished and analysis of the impedance spectra for the high concentrations of glutarate was consistent with the inhibition mechanism which assumes that the carboxylates support the passivation of carbon steel in aerated solutions by plugging the defect sites and that the passivation process is enhanced by adsorption of the carboxylates on the oxide-covered surface. Such mechanism was confirmed by the XPS analysis.


2015 ◽  
Vol 62 (2) ◽  
pp. 109-115
Author(s):  
Zhouyang Lian ◽  
Lirui Yuan ◽  
Wuji Wei ◽  
Qing Zhou ◽  
Juncheng Jiang

Purpose – This paper aims to study the controlled release and synergistic effect of water-soluble polyvinyl alcohol (PVA) on phosphate corrosion inhibitor at the interface of thermal insulation cotton/carbon steel. Design/methodology/approach – This study was carried out using a coating method, scanning electron microscopy, energy dispersive spectroscopy and AC impedance. Findings – The single-phase phosphate particles were coated/adsorbed on the PVA film, which was formed on the fiber surface of corrosion inhibitor/PVA-impregnated rock wool sample. On the surface of Q235 steel, an effective protective film was formed by the corrosion inhibitor with partially dissolved PVA that can significantly increase the polarization resistance of corrosion reaction, and reduce the capacitive reactance of electric double layer. The rock wool impregnated with the phosphate corrosion inhibitor and 1.5 per cent PVA showed obvious controlled release and inhibition synergism. Originality/value – The rock wool impregnated with the phosphate corrosion inhibitor and 1.5 per cent PVA showed the following advantages: the adsorption and release quantities of the corrosion inhibitor increased by 3.3 and 2.9 times, respectively; the release-adsorption equilibrium time increased from 2 to 6 h; and the corrosion inhibition efficiency increased from 61.55 per cent to 94.6 per cent.


2013 ◽  
Vol 67 (11) ◽  
pp. 2412-2417 ◽  
Author(s):  
Zhanhui Shen ◽  
Hongqiang Ren ◽  
Ke Xu ◽  
Jinju Geng ◽  
Lili Ding

Secondary-treated municipal wastewater (MWW) could supply a viable alternative water resource for cooling water systems. Inorganic salts in the concentrated cooling water pose a great challenge to corrosion control chemicals. In this study, the inhibition effect of 1-hydroxy ethylidene-1,1-diphosphonic acid (HEDP), trimethylene phosphonic acid (ATMP) and 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTCA) on corrosion of carbon steel in secondary-treated MWW was investigated by the means of potentiodynamic polarization and electrochemical impedance spectroscopy. The inhibition effect increased with increasing concentration of inhibitors. The corrosion rates of carbon steel were 1.5, 0.8, 0.2 and 0.5 mm a–1 for blank, HEDP, ATMP and PBTCA samples at 50 mg L–1, respectively. The phosphorus-based chemicals could adsorb onto the surface of the carbon steel electrode, form a coat of protective film and then protect the carbon steel from corrosion in the test solution.


2021 ◽  
Vol 8 (9) ◽  
Author(s):  
Gulmira Rakhymbay ◽  
Raigul Jumanova ◽  
Khaisa Avchukir ◽  
Yeldana Bakhytzhan ◽  
Akmaral Argimbayeva ◽  
...  

The present study reports a synthetic condensation process of a vegetable oil (waste) reacted with triethanolamine, maleic anhydride and acrylonitrile in (1 : 1.2 : 2 : 1) mole ratios to obtain N-(β-ethoxypropionitrile)-N,N-bis(2-hydroxyethylethoxy) fatty amide as a major inhibitory product. Corrosion property of steel in a 3% NaCl solution in the presence of a potential inhibitor was investigated using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods. These methods gave consistent results, from which it is noticeable that inhibition efficiency increases with the increasing concentration of the inhibitor. Gravimetric studies show an increase in the sample mass at an inhibitor concentration of 10 mM, indicative of adsorbed film formation on the surface. The polarization curve results showed that the compound demonstrates itself as an anodic-type inhibitor. A rise in polarization resistance values in the EIS measurements also confirmed that the compound acts as an effective inhibitor of steel corrosion. Furthermore, the R(CR)(QR) equivalent circuit was used to interpret the results obtained in the investigation of the corrosion behaviour of steel in solution with an inhibitor. The standard adsorption free energies calculated from the Langmuir isotherm indicate that adsorption takes place by physical and chemical mechanisms. The presence of adsorbed protective film was confirmed by FT-IR spectrum and SEM micrographs.


2019 ◽  
Vol 19 (6) ◽  
pp. 1653-1660 ◽  
Author(s):  
Zhanhui Shen ◽  
Shuzhan Zhang ◽  
Xingyi Dong ◽  
Jialu Shi ◽  
Jing Fan ◽  
...  

Abstract Secondary-treated municipal wastewater (MWW) is the alternative water source in recirculating cooling water systems. Municipal wastewater treatment plant (WWTP) effluent was collected and four fractions including hydrophobic acidic (HPOA), hydrophobic alkaline (HPOB), weakly hydrophobic (WHPO) and hydrophilic (HPI) organics were isolated from the effluent by using DAX-8/XAD-4 resin. We used potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) to investigate corrosion characteristics of N80 carbon steel in the different water samples and control samples. In contrast with control samples, the corrosion rate of N80 carbon steel decreased 41%, 23%, 18% and 4% in the presence of HPOA, HPOB, WHPO and HPI, respectively. The results were further confirmed by the EIS test. In the presence of the four fractions (especially HPOA), the radius of the semicircle in the Nyquist plot was much larger than that for the control samples, which indicated that the impedance in the EIS test of the HPOA sample was much higher than that of the control sample. The dissolved organic matter (DOM) could adsorb onto the surface of the electrode and form a protective film, which could inhibit electron transfer and increase the electrochemical impedance of the electrochemical test system.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 286
Author(s):  
Zhiyuan Feng ◽  
Charles C. Xu ◽  
Dadi Zhang ◽  
Rudolph Buchheit

The study of protective film formation on Mg alloys by exposure to sodium selenite solutions was conducted. Anodic polarization studies, electrochemical impedance spectroscopy studies, morphological analysis, and Energy-dispersive X-ray spectroscopy were performed on AZ31 Mg alloy after coating treatment in different concentrations of sodium selenite. The corrosion resistance was improved by around 5 times compared with control. Improved resistance to localized corrosion was observed in the coatings treated by 5 mM or 10 mM sodium selenite. The protection mechanism was ascribed to the transformation of selenite to insoluble selenium, the formation of insoluble MgSeO3 hydrate, and polymerization of amorphous selenium.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
J. Porcayo-Calderon ◽  
M. Casales-Diaz ◽  
L. M. Rivera-Grau ◽  
D. M. Ortega-Toledo ◽  
J. A. Ascencio-Gutierrez ◽  
...  

In order to determine the diesel contribution in the coadsorption process of the oil-soluble inhibitors, electrochemical impedance spectroscopy measurements have been carried out to study the performance of oil-soluble inhibitors in both presence and absence of diesel and CO2. The results showed that the presence of the oil phase provides some protection to the steel because the water-soluble fractions are capable of being adsorbed on the steel surface thereby reducing the corrosion rate. The oily phase does not contribute to the adsorption process of the inhibitor because the inhibitor is absorbed into the water-soluble fractions. The oil-soluble inhibitors are effective only when the solution is saturated with CO2. CO2saturation causes a decrease in the pH of the solution causing both an increase of the inhibitor solubility and a better dispersion of the inhibitor into the electrolyte.


Sign in / Sign up

Export Citation Format

Share Document