scholarly journals The thermal conductivity of some gases at 0° C

During recent years an increased interest has been displayed in the phenomena of gas conduction, particularly in their application to the observation of molecular changes and chemical dissociations. While relative measurements usually suffice for these purpose, there have also been carefully planned researches on the absolute thermal conductivities of gases, the results of which are of value in the development of the kinetic theory. A comprehensive account of the methods which have been employed in the past for the measurement of the thermal conductivity of gases is given in a recent paper by Trautz and Zündel, who include also a table of the available data to 1931 for air, hydrogen, and carbon dioxide. The lack of agreement between the values obtained by different workers shown in this table can be explained by the smallness of the quantity measured, and by the difficulty of eliminating the heat transfers by convection and by radiation, one or both of which are always present.

Reliable information about the γ-rays emitted by radium C' is particularly valuable since the main features of the nuclear level system are shown by the groups of long range α-particles and are hence accessible to direct investigation. These long range groups of α-particles have been measured recently by Rutherford, Lewis and Bowden by a greatly improved method which has not only brought to light several new groups, but in addition has given considerably greater accuracy in the determination of the energies of the groups than had been possible in the past. The energy of these groups in excess of that of the normal group is a measure of the excitation energy of the nucleus and the older measurements had indicated, as was to be expected, a close correspondence between these energies and the quantum energies of the γ-rays. The recent more accurate measurements of Rutherford, Lewis and Bowden provided the opportunity of a more rigorous test of this connection and showed the possibility, by the combination of the information from these two sources, of a direct experimental determination of the level system. However, the accuracy of the published data on the Ra C γ-rays deduced from the natural β-ray spectrum was subject to some doubts for the following reasons. The measurements dated from 1924 when the absolute energies of certain strong groups in the β-ray spectrum were measured and the energies of the remaining lines determined by relative measurements. The strong groups in question lay between 0.4 X 10 5 and 3.0 X 10 5 volts and the procedure of step-wise comparision up to energies of over 2 X 10 6 volts may have led to cumulative errors. More serious was that recent measurements on the Th (B + C) β-ray spectrum had thrown doubt on the correctness of the absolute values. Lastly, experiment gives values for H ρ , that is the momenta of the electrons in the groups, and the calculation of the energies involves e / m . The older data had been based on e / m = 1.769 X 10 7 , and while the change to the value 1.760 X 10 7 alters the energies proportionally far less, there was involved here an avoidable error which had to be removed.


1962 ◽  
Vol 17 (1) ◽  
pp. 126-130
Author(s):  
Leon Bernstein ◽  
Chiyoshi Yoshimoto

The analyzer described was de signed for measuring the concentration of carbon dioxide in the bag of gas from which the subject rebreathes in the “rebreathing method” for estimating the tension of carbon dioxide in mixed venous blood. Its merits are that it is cheap, robust, simple to construct and to service, easy to operate, and accurate when used by untrained operators. (Medical students, unacquainted with the instrument, and working with written instructions only, obtained at their first attempt results accurate to within ±0.36% [sd] of carbon dioxide.) The instrument is suitable for use by nurse or physician at the bedside, and also for classes in experimental physiology. Some discussion is presented of the theoretical principles underlying the design of analyzers employing thermal conductivity cells. Submitted on July 13, 1961


1971 ◽  
Vol 45 (4) ◽  
pp. 759-768 ◽  
Author(s):  
M. M. R. Williams

The effect of a temperature gradient in a gas inclined at an angle to a boundary wall has been investigated. For an infinite half-space of gas it is found that, in addition to the conventional temperature slip problem, the component of the temperature gradient parallel to the wall induces a net mass flow known as thermal creep. We show that the temperature slip and thermal creep effects can be decoupled and treated quite separately.Expressions are obtained for the creep velocity and heat flux, both far from and at the boundary; it is noted that thermal creep tends to reduce the effective thermal conductivity of the medium.


1961 ◽  
Vol 83 (2) ◽  
pp. 125-131 ◽  
Author(s):  
Jerome L. Novotny ◽  
Thomas F. Irvine

By measuring laminar recovery factors in a high velocity gas stream, experimental determinations were made of the Prandtl number of carbon dioxide over a temperature range from 285 to 450 K and of carbon-dioxide air mixtures at an average temperature of 285 K with a predicted maximum error of 1.5 per cent. Thermal conductivity values were deduced from these Prandtl numbers and compared with literature values measured by other methods. Using intermolecular force constants determined from literature experimental data, viscosities, thermal conductivities, and Prandtl numbers were calculated for carbon-dioxide air mixtures over the temperature range 200 to 1500 deg for mixture ratios from pure air to pure carbon dioxide.


Author(s):  
Ni Luo ◽  
Jing Xu ◽  
Xiyue Cheng ◽  
ZhenHua Li ◽  
Yidong Huang ◽  
...  

The good thermal stability of a phosphor is crucial for its practical applications. Unfortunately, in the past decades, only Gurney-Mott equation was available to describe the relation between the luminescence...


Author(s):  
Vivek Vishwakarma ◽  
Ankur Jain

A number of past papers have described experimental techniques for measurement of thermal conductivity of substrates and thin films of technological interest. Nearly all substrates measured in the past are rigid. There is a lack of papers that report measurements on a flexible substrate such as thin plastic. The paper presents an experimental methodology to deposit a thin film microheater device on a plastic substrate. This device, comprising a microheater line and a temperature sensor line is used to measure the thermal conductivity of the plastic substrate using the transient thermal response of the plastic substrate to a heating current. An analytical model describing this thermal response is presented. Thermal conductivity of the plastic substrate is determined by comparison of experimental data with the analytical model. Results described in this paper may aid in development of an understanding of thermal transport in flexible substrates.


2015 ◽  
Vol 8 (5) ◽  
pp. 383-387 ◽  
Author(s):  
Thomas K. Bauska ◽  
Fortunat Joos ◽  
Alan C. Mix ◽  
Raphael Roth ◽  
Jinho Ahn ◽  
...  

Axon ◽  
2019 ◽  
Author(s):  
Sophia Aneziri ◽  
Denis Rousset

The present paper presents the first volume of Collezioni epigrafiche della Grecia occidentale/Epigraphische Sammlungen aus Westgriechenland. It reflects, on the one hand, on the absolute necessity to preserve multilingualism in Altertumswissenschaft; on the other, on the purposes and methods of making catalogues or inventories of epigraphic collections; and finally on the past conditions and the current state of epigraphic and prosopographic research in West Greece and especially in Aetolia.


Sign in / Sign up

Export Citation Format

Share Document