Transient kinetics of formation of anodic oxide films on tantalum in dilute sulphuric acid

When a high electric field is suddenly applied to a film in which the concentration of Frenkel defects is initially much lower than would be set up at this field in the steady state, the ionic current (which is supposed to be proportional to the concentration of Frenkel defects) builds up slowly at first and then more rapidly (approximately as d i /d t = ki 2 , where k increases with the field) before stabilizing at the steady-state value. This is in contradiction with the theory that Frenkel defects are produced directly by the high electric field which assists the movement of ions from lattice sites into interstitial sites. According to this theory, d i /d t should be greatest at t = 0. The experimental result suggests that mobile ions are produced by a cascade process in which moving ions eject ions from lattice sites into interstitial sites. Experiments in which the electric field in the oxide film is suddenly changed and the ionic current is measured before the concentration of mobile ions has time to change are expected to give f ' 2 ( E ), where the ionic current is determined (for a given concentration of ions) by a Boltzmann factor with activation energy W 2 reduced by the field by an amount f 2 ( E ). The results were consistent with f 2 ( E ) = q ( α 2 E — β 2 E 2 ) where q = charge on ion, α 2 = 2.23 Å and β 2 = 0.106 Å/10 6 V cm -1 . Experiments in which fields were suddenly applied at different temperatures to films in the same initial state gave an estimate of the activation energy for ionic mobility W 2 as 1.28 ± 0.1eV.

Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 150
Author(s):  
Ioulia Chikina ◽  
Sawako Nakamae ◽  
Valeriy Shikin ◽  
Andrey Varlamov

We discuss the peculiarities of the Seebeck effect in stabilized electrolytes containing the colloidal particles. Its unusual feature is the two stage character, with the linear increase of differential thermopower as the function of colloidal particles concentration n⊙ during the first stage (“initial state”) and dramatic drop of it at small n⊙ during the second one (“steady state”). We show that the properties of the initial state are governed by the thermo-diffusion flows of the mobile ions of the stabilizing electrolyte medium itself and how the colloidal particles participate in the formation of the electric field in the bulk of the suspension. In its turn, we attribute the specifics of the steady state thermoelectric effect the massive colloidal particles undergoing slow thermal diffusion and the break down of their electro-neutrality in the vicinity of electrodes.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 640 ◽  
Author(s):  
Muhammad Shoaib Bhutta ◽  
Shakeel Akram ◽  
Pengfei Meng ◽  
Jerome Castellon ◽  
Serge Agnel ◽  
...  

The steady-state electrical conduction current for single and multilayer polyimide (PI) nanocomposite films was observed at the low and high electric field for different temperatures. Experimental data were fitted to conduction models to investigate the dominant conduction mechanism in these films. In most films, space charge limited current (SCLC) and Poole–Frenkel current displayed dominant conduction. At a high electric field, the ohmic conduction was replaced by current–voltage dependency. Higher conduction current was observed for nanocomposite films at a lower temperature, but it declined at a higher temperature. PI nanocomposite multilayer films showed a huge reduction in the conduction current at higher electric fields and temperatures. The conclusions derived in this study would provide the empirical basis and early breakdown phenomenon explanation when performing dielectric strength and partial discharge measurements of PI-based nanocomposite insulation systems of electric motors.


2020 ◽  
Vol 140 (8) ◽  
pp. 650-655
Author(s):  
Shoki Tsuji ◽  
Yoji Fujita ◽  
Hiroaki Urushibata ◽  
Akihiko Kono ◽  
Ryoichi Hanaoka ◽  
...  

1979 ◽  
Vol 44 (3) ◽  
pp. 841-853 ◽  
Author(s):  
Zbyněk Ryšlavý ◽  
Petr Boček ◽  
Miroslav Deml ◽  
Jaroslav Janák

The problem of the longitudinal temperature distribution was solved and the bearing of the temperature profiles on the qualitative characteristics of the zones and on the interpretation of the record of the separation obtained from a universal detector was considered. Two approximative physical models were applied to the solution: in the first model, the temperature dependences of the mobilities are taken into account, the continuous character of the electric field intensity at the boundary being neglected; in the other model, the continuous character of the electric field intensity is allowed for. From a comparison of the two models it follows that in practice, the variations of the mobilities with the temperature are the principal factor affecting the shape of the temperature profiles, the assumption of a discontinuous jump of the electric field intensity at the boundary being a good approximation to the reality. It was deduced theoretically and verified experimentally that the longitudinal profiles can appreciably affect the longitudinal variation of the effective mobilities in the zone, with an infavourable influence upon the qualitative interpretation of the record. Pronounced effects can appear during the analyses of the minor components, where in the corresponding short zone a temperature distribution occurs due to the influence of the temperatures of the neighbouring zones such that the temperature in the zone of interest in fact does not attain a constant value in axial direction. The minor component does not possess the steady-state mobility throughout the zone, which makes the identification of the zone rather difficult.


1997 ◽  
Vol 481 ◽  
Author(s):  
Matthew T. Johnson ◽  
Shelley R. Gilliss ◽  
C. Barry Carter

ABSTRACTThin films of In2O3 and Fe2O3 have been deposited on (001) MgO using pulsed-laser deposition (PLD). These thin-film diffusion couples were then reacted in an applied electric field at elevated temperatures. In this type of solid-state reaction, both the reaction rate and the interfacial stability are affected by the transport properties of the reacting ions. The electric field provides a very large external driving force that influences the diffusion of the cations in the constitutive layers. This induced ionic current causes changes in the reaction rates, interfacial stability and distribution of the phases. Through the use of electron microscopy techniques the reaction kinetics and interface morphology have been investigated in these spinel-forming systems, to gain a better understanding of the influence of an electric field on solid-state reactions.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Daisuke Fujiwara ◽  
Naoki Tsujikawa ◽  
Tetsuya Oshima ◽  
Kojiro Iizuka

Abstract Planetary exploration rovers have required a high traveling performance to overcome obstacles such as loose soil and rocks. Push-pull locomotion rovers is a unique scheme, like an inchworm, and it has high traveling performance on loose soil. Push-pull locomotion uses the resistance force by keeping a locked-wheel related to the ground, whereas the conventional rotational traveling uses the shear force from loose soil. The locked-wheel is a key factor for traveling in the push-pull scheme. Understanding the sinking behavior and its resistance force is useful information for estimating the rover’s performance. Previous studies have reported the soil motion under the locked-wheel, the traction, and the traveling behavior of the rover. These studies were, however, limited to the investigation of the resistance force and amount of sinkage for the particular condition depending on the rover. Additionally, the locked-wheel sinks into the soil until it obtains the required force for supporting the other wheels’ motion. How the amount of sinkage and resistance forces are generated at different wheel sizes and mass of an individual wheel has remained unclear, and its estimation method hasn’t existed. This study, therefore, addresses the relationship between the sinkage and its resistance force, and we analyze and consider this relationship via the towing experiment and theoretical consideration. The results revealed that the sinkage reached a steady-state value and depended on the contact area and mass of each wheel, and the maximum resistance force also depends on this sinkage. Additionally, the estimation model did not capture the same trend as the experimental results when the wheel width changed, whereas, the model captured a relatively the same trend as the experimental result when the wheel mass and diameter changed.


Sign in / Sign up

Export Citation Format

Share Document