scholarly journals Dynamics of atmospheres with a non-dilute condensible component

Author(s):  
Raymond T. Pierrehumbert ◽  
Feng Ding

The diversity of characteristics for the host of recently discovered exoplanets opens up a great deal of fertile new territory for geophysical fluid dynamics, particularly when the fluid flow is coupled to novel thermodynamics, radiative transfer or chemistry. In this paper, we survey one of these new areas—the climate dynamics of atmospheres with a non-dilute condensible component, defined as the situation in which a condensible component of the atmosphere makes up a substantial fraction of the atmospheric mass within some layer. Non-dilute dynamics can occur for a wide range of condensibles, generically applying near both the inner and the outer edges of the conventional habitable zone and in connection with runaway greenhouse phenomena. It also applies in a wide variety of other planetary circumstances. We first present a number of analytical results developing some key features of non-dilute atmospheres, and then show how some of these features are manifest in simulations with a general circulation model adapted to handle non-dilute atmospheres. We find that non-dilute atmospheres have weak horizontal temperature gradients even for rapidly rotating planets, and that their circulations are largely barotropic. The relative humidity of the condensible component tends towards 100% as the atmosphere becomes more non-dilute, which has important implications for runaway greenhouse thresholds. Non-dilute atmospheres exhibit a number of interesting organized convection features, for which there is not yet any adequate theoretical understanding.

2013 ◽  
Vol 43 (12) ◽  
pp. 2661-2672 ◽  
Author(s):  
Florian Sévellec ◽  
Joël J.-M. Hirschi ◽  
Adam T. Blaker

Abstract The Atlantic meridional overturning circulation (AMOC) is a crucial component of the global climate system. It is responsible for around a quarter of the global northward heat transport and contributes to the mild European climate. Observations and numerical models suggest a wide range of AMOC variability. Recent results from an ocean general circulation model (OGCM) in a high-resolution configuration (¼°) suggest the existence of superinertial variability of the AMOC. In this study, the validity of this result in a theoretical framework is tested. At a low Rossby number and in the presence of Rayleigh friction, it is demonstrated that, unlike a typical forced damped oscillator (which shows subinertial resonance), the AMOC undergoes both super- and subinertial resonances (except at low latitudes and for high friction). A dimensionless number Sr, measuring the ratio of ageo- to geostrophic forcing (i.e., the zonal versus meridional pressure gradients), indicates which of these resonances dominates. If Sr ≪ 1, the AMOC variability is mainly driven by geostrophic forcing and shows subinertial resonance. Alternatively and consistent with the recently published ¼° OGCM experiments, if Sr ≫ 1, the AMOC variability is mainly driven by the ageostrophic forcing and shows superinertial resonance. In both regimes, a forcing of ±1 K induces an AMOC variability of ±10 Sv (1 Sv ≡ 106 m3 s−1) through these near-inertial resonance phenomena. It is also shown that, as expected from numerical simulations, the spatial structure of the near-inertial AMOC variability corresponds to equatorward-propagating waves equivalent to baroclinic Poincaré waves. The long-time average of this resonance phenomenon, raising and depressing the pycnocline, could contribute to the mixing of the ocean stratification.


2018 ◽  
Vol 146 (10) ◽  
pp. 3259-3275 ◽  
Author(s):  
Lawrence L. Takacs ◽  
Max J. Suárez ◽  
Ricardo Todling

Abstract A recent attempt to downscale the 50-km MERRA-2 analyses to 7 km revealed an instability associated with the incremental analysis update (IAU) procedure that has thus far gone unnoticed. A theoretical study based on a simple damped harmonic oscillator with complex frequency provides the framework to diagnose the problem and suggests means to avoid it. Three possible approaches to avoid the instability are to (i) choose an “ideal” ratio of the lengths of the predictor and corrector steps of IAU based on a theoretical stability diagram, (ii) time average the background fields used to construct the IAU tendencies with given frequency, or (iii) apply a digital filter modulation to the IAU tendencies. All these are shown to control the instability for a wide range of resolutions when doing up- or downscaling, experiments with the NASA GMAO atmospheric general circulation model. Furthermore, it is found that combining IAU with the ensemble recentering step typical of hybrid ensemble–variational approaches also results in an instability based on the same mechanisms in the members of the ensemble. An example of such occurrence arises in an experiment performed with the GMAO 12.8-km hybrid 4D-EnVar system. Modulation of the ensemble IAU tendencies with a digital filter is shown to avoid the instability. In addition, the stability of certain 4D incremental analysis update (4DIAU) implementations is analyzed and a suggestion is made to improve its results, though a complete study of this subject is postponed to a follow-up work.


2008 ◽  
Vol 21 (22) ◽  
pp. 5797-5806 ◽  
Author(s):  
Paul A. O’Gorman ◽  
Tapio Schneider

Abstract As the climate changes, changes in static stability, meridional temperature gradients, and availability of moisture for latent heat release may exert competing effects on the energy of midlatitude transient eddies. This paper examines how the eddy kinetic energy in midlatitude baroclinic zones responds to changes in radiative forcing in simulations with an idealized moist general circulation model. In a series of simulations in which the optical thickness of the longwave absorber is varied over a wide range, the eddy kinetic energy has a maximum for a climate with mean temperature similar to that of present-day earth, with significantly smaller values both for warmer and for colder climates. In a series of simulations in which the meridional insolation gradient is varied, the eddy kinetic energy increases monotonically with insolation gradient. In both series of simulations, the eddy kinetic energy scales approximately linearly with the dry mean available potential energy averaged over the baroclinic zones. Changes in eddy kinetic energy can therefore be related to the changes in the atmospheric thermal structure that affect the mean available potential energy.


2014 ◽  
Vol 7 (6) ◽  
pp. 7575-7617 ◽  
Author(s):  
A. Molod ◽  
L. Takacs ◽  
M. Suarez ◽  
J. Bacmeister

Abstract. The Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA2) version of the GEOS-5 Atmospheric General Circulation Model (AGCM) is currently in use in the NASA Global Modeling and Assimilation Office (GMAO) at a wide range of resolutions for a variety of applications. Details of the changes in parameterizations subsequent to the version in the original MERRA reanalysis are presented here. Results of a series of atmosphere-only sensitivity studies are shown to demonstrate changes in simulated climate associated with specific changes in physical parameterizations, and the impact of the newly implemented resolution-aware behavior on simulations at different resolutions is demonstrated. The GEOS-5 AGCM presented here is the model used as part of the GMAO's MERRA2 reanalysis, the global mesoscale "nature run", the real-time numerical weather prediction system, and for atmosphere-only, coupled ocean–atmosphere and coupled atmosphere–chemistry simulations. The seasonal mean climate of the MERRA2 version of the GEOS-5 AGCM represents a substantial improvement over the simulated climate of the MERRA version at all resolutions and for all applications. Fundamental improvements in simulated climate are associated with the increased re-evaporation of frozen precipitation and cloud condensate, resulting in a wetter atmosphere. Improvements in simulated climate are also shown to be attributable to changes in the background gravity wave drag, and to upgrades in the relationship between the ocean surface stress and the ocean roughness. The series of "resolution aware" parameters related to the moist physics were shown to result in improvements at higher resolutions, and result in AGCM simulations that exhibit seamless behavior across different resolutions and applications.


2017 ◽  
Vol 10 (4) ◽  
pp. 1423-1445 ◽  
Author(s):  
Gianpiero Cossarini ◽  
Stefano Querin ◽  
Cosimo Solidoro ◽  
Gianmaria Sannino ◽  
Paolo Lazzari ◽  
...  

Abstract. In this paper, we present a coupling scheme between the Massachusetts Institute of Technology general circulation model (MITgcm) and the Biogeochemical Flux Model (BFM). The MITgcm and BFM are widely used models for geophysical fluid dynamics and for ocean biogeochemistry, respectively, and they benefit from the support of active developers and user communities. The MITgcm is a state-of-the-art general circulation model for simulating the ocean and the atmosphere. This model is fully 3-D (including the non-hydrostatic term of momentum equations) and is characterized by a finite-volume discretization and a number of additional features enabling simulations from global (O(107) m) to local scales (O(100) m). The BFM is a biogeochemical model based on plankton functional type formulations, and it simulates the cycling of a number of constituents and nutrients within marine ecosystems. The online coupling presented in this paper is based on an open-source code, and it is characterized by a modular structure. Modularity preserves the potentials of the two models, allowing for a sustainable programming effort to handle future evolutions in the two codes. We also tested specific model options and integration schemes to balance the numerical accuracy against the computational performance. The coupling scheme allows us to solve several processes that are not considered by each of the models alone, including light attenuation parameterizations along the water column, phytoplankton and detritus sinking, external inputs, and surface and bottom fluxes. Moreover, this new coupled hydrodynamic–biogeochemical model has been configured and tested against an idealized problem (a cyclonic gyre in a mid-latitude closed basin) and a realistic case study (central part of the Mediterranean Sea in 2006–2012). The numerical results consistently reproduce the interplay of hydrodynamics and biogeochemistry in both the idealized case and Mediterranean Sea experiments. The former reproduces correctly the alternation of surface bloom and deep chlorophyll maximum dynamics driven by the seasonal cycle of winter vertical mixing and summer stratification; the latter simulates the main basin-wide and mesoscale spatial features of the physical and biochemical variables in the Mediterranean, thus demonstrating the applicability of the new coupled model to a wide range of ocean biogeochemistry problems.


2009 ◽  
Vol 66 (6) ◽  
pp. 1821-1833 ◽  
Author(s):  
Timothy M. Merlis ◽  
Tapio Schneider

Abstract Linear stability analyses are performed on a wide range of mean flows simulated with a dry idealized general circulation model. The zonal length scale of the linearly most unstable waves is similar to the Rossby radius. It is also similar to the energy-containing zonal length scale in statistically steady states of corresponding nonlinear simulations. The meridional length scale of the linearly most unstable waves is generally smaller than the energy-containing meridional length scale in the corresponding nonlinear simulations. The growth rate of the most unstable waves increases with increasing Eady growth rate, but the scaling relationship is not linear in general. The available potential energy and barotropic and baroclinic kinetic energies of the linearly most unstable waves scale linearly with each other, with similar partitionings among the energy forms as in the corresponding nonlinear simulations. These results show that the mean flows in the nonlinear simulations are baroclinically unstable, yet there is no substantial inverse cascade of barotropic eddy kinetic energy from the baroclinic generation scale to larger scales, even in strongly unstable flows. Some aspects of the nonlinear simulations, such as partitionings among eddy energies, can be understood on the basis of linear stability analyses; for other aspects, such as the structure of heat and momentum fluxes, nonlinear modifications of the waves are important.


2011 ◽  
Vol 68 (4) ◽  
pp. 769-783 ◽  
Author(s):  
Xavier J. Levine ◽  
Tapio Schneider

Abstract It is unclear how the width and strength of the Hadley circulation are controlled and how they respond to climate changes. Simulations of global warming scenarios with comprehensive climate models suggest the Hadley circulation may widen and weaken as the climate warms. But these changes are not quantitatively consistent among models, and how they come about is not understood. Here, a wide range of climates is simulated with an idealized moist general circulation model (GCM) coupled to a simple representation of ocean heat transport, in order to place past and possible future changes in the Hadley circulation into a broader context and to investigate the mechanisms responsible for them. By comparison of simulations with and without ocean heat transport, it is shown that it is essential to take low-latitude ocean heat transport and its coupling to wind stress into account to obtain Hadley circulations in a dynamical regime resembling Earth’s, particularly in climates resembling present-day Earth’s and colder. As the optical thickness of an idealized longwave absorber in the simulations is increased and the climate warms, the Hadley circulation strengthens in colder climates and weakens in warmer climates; it has maximum strength in a climate close to present-day Earth’s. In climates resembling present-day Earth’s and colder, the Hadley circulation strength is largely controlled by the divergence of angular momentum fluxes associated with eddies of midlatitude origin; the latter scale with the mean available potential energy in midlatitudes. The importance of these eddy momentum fluxes for the Hadley circulation strength gradually diminishes as the climate warms. The Hadley circulation generally widens as the climate warms, but at a modest rate that depends sensitively on how it is determined.


2011 ◽  
Vol 41 (9) ◽  
pp. 1659-1672 ◽  
Author(s):  
Stefano Berti ◽  
Francisco Alves Dos Santos ◽  
Guglielmo Lacorata ◽  
Angelo Vulpiani

Abstract In the framework of Monitoring by Ocean Drifters (MONDO) project, a set of Lagrangian drifters were released in proximity of the Brazil Current, the western branch of the subtropical gyre in the South Atlantic Ocean. The experimental strategy of deploying part of the buoys in clusters offers the opportunity to examine relative dispersion on a wide range of scales. Adopting a dynamical systems approach, the authors focus their attention on scale-dependent indicators, like the finite-scale Lyapunov exponent (FSLE) and the finite-scale (mean square) relative velocity (FSRV) between two drifters as a function of their separation and compare them with classic time-dependent statistical quantities like the mean-square relative displacement between two drifters and the effective diffusivity as functions of the time lag from the release. The authors find that, dependently on the given observable, the quasigeostrophic turbulence scenario is overall compatible with their data analysis, with discrepancies from the expected behavior of 2D turbulent trajectories likely to be ascribed to the nonstationary and nonhomogeneous characteristics of the flow, as well as to possible ageostrophic effects. Submesoscale features of ~O(1) km are considered to play a role, to some extent, in determining the properties of relative dispersion as well as the shape of the energy spectrum. The authors also present numerical simulations of an ocean general circulation model (OGCM) of the South Atlantic and discuss the comparison between experimental and model data about mesoscale dispersion.


2014 ◽  
Vol 11 (7) ◽  
pp. 10537-10569 ◽  
Author(s):  
L. Kwiatkowski ◽  
A. Yool ◽  
J. I. Allen ◽  
T. R. Anderson ◽  
R. Barciela ◽  
...  

Abstract. Ocean biogeochemistry (OBGC) models span a wide range of complexities from highly simplified, nutrient-restoring schemes, through nutrient-phytoplankton-zooplankton-detritus (NPZD) models that crudely represent the marine biota, through to models that represent a broader trophic structure by grouping organisms as plankton functional types (PFT) based on their biogeochemical role (Dynamic Green Ocean Models; DGOM) and ecosystem models which group organisms by ecological function and trait. OBGC models are now integral components of Earth System Models (ESMs), but they compete for computing resources with higher resolution dynamical setups and with other components such as atmospheric chemistry and terrestrial vegetation schemes. As such, the choice of OBGC in ESMs needs to balance model complexity and realism alongside relative computing cost. Here, we present an inter-comparison of six OBGC models that were candidates for implementation within the next UK Earth System Model (UKESM1). The models cover a large range of biological complexity (from 7 to 57 tracers) but all include representations of at least the nitrogen, carbon, alkalinity and oxygen cycles. Each OBGC model was coupled to the Nucleus for the European Modelling of the Ocean (NEMO) ocean general circulation model (GCM), and results from physically identical hindcast simulations were compared. Model skill was evaluated for biogeochemical metrics of global-scale bulk properties using conventional statistical techniques. The computing cost of each model was also measured in standardised tests run at two resource levels. No model is shown to consistently outperform or underperform all other models across all metrics. Nonetheless, the simpler models that are easier to tune are broadly closer to observations across a number of fields, and thus offer a high-efficiency option for ESMs that prioritise high resolution climate dynamics. However, simpler models provide limited insight into more complex marine biogeochemical processes and ecosystem pathways, and a parallel approach of low resolution climate dynamics and high complexity biogeochemistry is desirable in order to provide additional insights into biogeochemistry–climate interactions.


Sign in / Sign up

Export Citation Format

Share Document