scholarly journals Nonlinear viscoelasticity of strain rate type: an overview

Author(s):  
Yasemin Şengül

There are some materials in nature that experience deformations that are not elastic. Viscoelastic materials are some of them. We come across many such materials in our daily lives through a number of interesting applications in engineering, material science and medicine. This article concerns itself with modelling of the nonlinear response of a class of viscoelastic solids. In particular, nonlinear viscoelasticity of strain rate type, which can be described by a constitutive relation for the stress function depending not only on the strain but also on the strain rate, is considered. This particular case is not only favourable from a mathematical analysis point of view but also due to experimental observations, knowledge of the strain rate sensitivity of viscoelastic properties is crucial for accurate predictions of the mechanical behaviour of solids in different areas of applications. First, a brief introduction of some basic terminology and preliminaries, including kinematics, material frame-indifference and thermodynamics, is given. Then, considering the governing equations with constitutive relationships between the stress and the strain for the modelling of nonlinear viscoelasticity of strain rate type, the most general model of interest is obtained. Then, the long-term behaviour of solutions is discussed. Finally, some applications of the model are presented.

2016 ◽  
Vol 08 (05) ◽  
pp. 1650060 ◽  
Author(s):  
D. Soldatos ◽  
S. P. Triantafyllou

In this work, we present a new rate type formulation of large deformation generalized plasticity which is based on the consistent use of the logarithmic rate concept. For this purpose, the basic constitutive equations are initially established in a local rotationally neutralized configuration which is defined by the logarithmic spin. These are then rephrased in their spatial form, by employing some standard concepts from the tensor analysis on manifolds. Such an approach, besides being compatible with the notion of (hyper)elasticity, offers three basic advantages, namely: (i) The principle of material frame-indifference is trivially satisfied. (ii) The structure of the infinitesimal theory remains essentially unaltered. (iii) The formulation does not preclude anisotropic response. A general integration scheme for the computational implementation of generalized plasticity models which are based on the logarithmic rate is also discussed. The performance of the scheme is tested by two representative numerical examples.


2014 ◽  
Vol 28 (20) ◽  
pp. 1450124 ◽  
Author(s):  
Xixun Shen ◽  
Congcong Zhang ◽  
Tao Zeng ◽  
Danhong Cheng ◽  
Jianshe Lian

The long-term stress relaxation tests with a relaxation time of about 7 h are performed on the bulk dense nanocrystalline Ni (with a mean grain size of 27 nm) pre-deformed at strain rate from 4.17 s-1- 4.17 × 10-6 s-1, where a phenomenon that the initial relaxation behavior of nc Ni depends on itself deformation history. That is, the nc Ni s pre-deformed at higher strain rate (not less than 4.17 × 10-3 s-1) exhibit a three-staged relaxation process from the initial near linear rapidly stress delayed (LRSD) stage and the subsequent lumber nonlinear stress delayed (LNSD) one and the final near linear slowly stress delayed (LSSD) one while only the later two stages are observed for the nc Ni s pre-deformed at low strain rate. The three-stage relaxation behavior is attributed to the transition from the initial dislocation-dominated plasticity to the mixture of dislocation motion and diffusion-based GB activity and finally to the entire diffusion-based GB activity including GB sliding or grain rotation in the rate-controlling deformation mechanism, which was illuminated by the attained three-staged strain rate sensitivity and activation volume and the exhaustion of mobile density of deformed nc Ni in the first two stages of relaxation. Such rate-controlling deformation mechanism well interpreted the macroscopic tensile mechanical behavior of nc Ni and simultaneously an optimizing strategy in improving the ductility of nc Ni is also mentioned.


Author(s):  
M. F. Stevens ◽  
P. S. Follansbee

The strain rate sensitivity of a variety of materials is known to increase rapidly at strain rates exceeding ∼103 sec-1. This transition has most often in the past been attributed to a transition from thermally activated guide to viscous drag control. An important condition for imposition of dislocation drag effects is that the applied stress, σ, must be on the order of or greater than the threshold stress, which is the flow stress at OK. From Fig. 1, it can be seen for OFE Cu that the ratio of the applied stress to threshold stress remains constant even at strain rates as high as 104 sec-1 suggesting that there is not a mechanism transition but that the intrinsic strength is increasing, since the threshold strength is a mechanical measure of intrinsic strength. These measurements were made at constant strain levels of 0.2, wnich is not a guarantee of constant microstructure. The increase in threshold stress at higher strain rates is a strong indication that the microstructural evolution is a function of strain rate and that the dependence becomes stronger at high strain rates.


Author(s):  
Sergey Kovalenko

The management of surface watercourses is an urgent scientific task. The article presents the results of statistical processing of long-term monthly data of field observations of hydrological and hydrochemical parameters along the Upper Yerga small river in the Vologda region. Sampling estimates of statistical parameters are obtained, autocorrelation and correlation analyzes are performed. The limiting periods from the point of view of pollution for water receivers receiving wastewater from drained agricultural areas are identified.


The results of experimental studies of masonry on the action of dynamic and static (short-term and long-term) loads are presented. The possibility of plastic deformations in the masonry is analyzed for different types of force effects. The falsity of the proposed approach to the estimation of the coefficient of plasticity of masonry, taking into account the ratio of elastic and total deformations of the masonry is noted. The study of the works of Soviet scientists revealed that the masonry under the action of seismic loads refers to brittle materials in the complete absence of plastic properties in it in the process of instantaneous application of forces. For the cases of uniaxial and plane stress states of the masonry, data on the coefficient of plasticity obtained from the experiment are presented. On the basis of experimental studies the influence of the strength of the so-called base materials (brick, mortar) on the bearing capacity of the masonry, regardless of the nature of the application of forces and the type of its stress state, is noted. The analysis of works of prof. S. V. Polyakov makes it possible to draw a conclusion that at the long application of the load, characteristic for the masonry are not plastic deformations, but creep deformations. It is shown that the proposals of some authors on the need to reduce the level of adhesion of the mortar to the brick for the masonry erected in earthquake-prone regions in order to improve its plastic properties are erroneous both from the structural point of view and from the point of view of ensuring the seismic resistance of structures. It is noted that the proposal to assess the plasticity of the masonry of ceramic brick walls and large-format ceramic stone with a voidness of more than 20% is incorrect, and does not meet the work of the masonry of hollow material. On the basis of the analysis of a large number of research works it is concluded about the fragile work of masonry.


1993 ◽  
Vol 39 (131) ◽  
pp. 10-14 ◽  
Author(s):  
J. F. Nye

AbstractThe pattern of horizontal strain rate in an ice sheet is discussed from a topological point of view. In a circularly symmetric ice sheet, the isotropic point for strain rate at its centre is degenerate and structurally unstable. On perturbation the degenerate point splits into two elementary isotropic points, each of which has the lemon pattern for the trajectories of principal strain rate. Contour maps of principal strain-rate values are presented which show the details of the splitting.


Author(s):  
Evi Zohar

Continuing the workshop I've given in the WPC Paris (2017), this article elaborates my discussion of the way I interlace Focusing with Differentiation Based Couples Therapy (Megged, 2017) under the systemic view, in order to facilitate processes of change and healing in working with intimate couples. This article presents the theory and rationale of integrating Differentiation (Bowen, 1978; Schnarch, 2009; Megged, 2017) and Focusing (Gendlin, 1981) approaches, and its therapeutic potential in couple's therapy. It is written from the point of view of a practicing professional in order to illustrate the experiential nature and dynamics of the suggested therapeutic path. Differentiation is a key to mutuality. It offers a solution to the central struggle of any long term intimate relationship: balancing two basic life forces - the drive for individuality and the drive for togetherness (Schnarch, 2009). Focusing is a body-oriented process of self-awareness and emotional healing, in which one learns to pay attention to the body and the ‘Felt Sense’, in order to unfold the implicit, keep it in motion at the precise pace it needs for carrying the next step forward (Gendlin, 1996). Combining Focusing and Differentiation perspectives can cultivate the kind of relationship where a conflict can be constructively and successfully held in the inner world of each partner, while taking into consideration the others' well-being. This creates the possibility for two people to build a mutual emotional field, open to changes, permeable and resilient.


2021 ◽  
pp. 108602662110316
Author(s):  
Tiziana Russo-Spena ◽  
Nadia Di Paola ◽  
Aidan O’Driscoll

An effective climate change action involves the critical role that companies must play in assuring the long-term human and social well-being of future generations. In our study, we offer a more holistic, inclusive, both–and approach to the challenge of environmental innovation (EI) that uses a novel methodology to identify relevant configurations for firms engaging in a superior EI strategy. A conceptual framework is proposed that identifies six sets of driving characteristics of EI and two sets of beneficial outcomes, all inherently tensional. Our analysis utilizes a complementary rather than an oppositional point of view. A data set of 65 companies in the ICT value chain is analyzed via fuzzy-set comparative analysis (fsQCA) and a post-QCA procedure. The results reveal that achieving a superior EI strategy is possible in several scenarios. Specifically, after close examination, two main configuration groups emerge, referred to as technological environmental innovators and organizational environmental innovators.


2010 ◽  
Vol 108-111 ◽  
pp. 494-499
Author(s):  
Ying Tong ◽  
Guo Zheng Quan ◽  
Gang Luo ◽  
Jie Zhou

This work was focused on the compressive deformation behavior of 42CrMo steel at temperatures from 1123K to 1348K and strain rates from 0.01s-1 to 10s-1 on a Gleeble-1500 thermo-simulation machine. The true stress-strain curves tested exhibit peak stresses at small strains, after them the flow stresses decrease monotonically until high strains, showing a dynamic flow softening. And the stress level decreases with increasing deformation temperature and decreasing strain rate. The values of strain hardening exponent n, and the strain rate sensitivity exponent m were calculated the method of multiple linear regression, the results show that the two material parameters are not constants, but changes with temperature and strain rate. Then the two variable material parameters were introduced into Fields-Backofen equation amended. Thus the constitutive mechanical discription of 42CrMo steel which can accurately describe the relationships among flow stress, temperature, strain rate, strain offers the basic model for plastic forming process simulation.


Sign in / Sign up

Export Citation Format

Share Document