Chemical studies of the combining sites of antibodies

1966 ◽  
Vol 166 (1003) ◽  
pp. 188-206 ◽  

Recent advances in molecular biology have permitted significant progress in correlating the chemical structure and biological function of naturally occurring macromolecules. The problem of the nature and mechanism of the immune response is a field of molecular biology which still poses many difficulties at both the cellular and the molecular level. The heterogeneity of antibodies is an outstanding example of these difficulties. One of the approaches to a better understanding of the chemical basis of immunological phenomena was the use of simple and well-defined molecules as elicitors of the various types of immune response. The use of synthetic polypeptides, polypeptidyl proteins, and of conjugates of various small molecules with synthetic polypeptides in studies of the molecular basis of immunological phenomena (for review, see Sela 1966) facilitates, due to the relative simplicity of these antigenic models, the interpretation of results obtained with them and sometimes permits the detection of differences, such as genetic variations in the capacity to produce specific antibodies (Levine, Ojeda & Benacerraf 1963; McDevitt & Sela 1965), which are not observable with complex natural antigens. Antibodies directed toward synthetic polypeptides may prove useful in studies of the antibody structure and biosynthesis, as it should be possible to correlate differences between the antibodies with the known differences between the synthetic antigens.

2021 ◽  
Author(s):  
Xiaomin Ni ◽  
Martin Schröder ◽  
Vincent Olieric ◽  
May E. Sharpe ◽  
Victor Olmos ◽  
...  

ABSTRACTThe nsP3 macrodomain is a conserved protein interaction module that plays essential regulatory roles in host immune response by recognizing and removing posttranslational ADP-ribosylation sites during SARS-CoV-2 infection. Thus, targeting this protein domain may offer a therapeutic strategy to combat the current and future virus pandemics. To assist inhibitor development efforts, we report here a comprehensive set of macrodomain crystal structures complexed with diverse naturally-occurring nucleotides, small molecules as well as nucleotide analogues including GS-441524 and its phosphorylated analogue, active metabolites of remdesivir. The presented data strengthen our understanding of the SARS-CoV-2 macrodomain structural plasticity and it provides chemical starting points for future inhibitor development.


2020 ◽  
Vol 20 (19) ◽  
pp. 2019-2035
Author(s):  
Esmaeil Sheikh Ahmadi ◽  
Amir Tajbakhsh ◽  
Milad Iranshahy ◽  
Javad Asili ◽  
Nadine Kretschmer ◽  
...  

Naturally occurring naphthoquinones (NQs) comprising highly reactive small molecules are the subject of increasing attention due to their promising biological activities such as antioxidant, antimicrobial, apoptosis-inducing activities, and especially anticancer activity. Lapachol, lapachone, and napabucasin belong to the NQs and are in phase II clinical trials for the treatment of many cancers. This review aims to provide a comprehensive and updated overview on the biological activities of several new NQs isolated from different species of plants reported from January 2013 to January 2020, their potential therapeutic applications and their clinical significance.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1637
Author(s):  
Solida Long ◽  
Joana B. Loureiro ◽  
Carla Carvalho ◽  
Luís Gales ◽  
Lucília Saraiva ◽  
...  

The tumor suppressor p53 is inactivated by mutation in approximately 50% of human cancers. Small molecules that bind and stabilize those mutants may represent effective anticancer drugs. Herein, we report the tumor cell growth inhibitory activity of carbazole alkaloids and amino derivatives, as well as their potential activation of p53. Twelve aminocarbazole alkaloids were semi-synthesized from heptaphylline (1), 7-methoxy heptaphylline (2), and 7-methoxymukonal (3), isolated from Clausena harmandiana, using a reductive amination protocol. Naturally-occurring carbazoles 1–3 and their amino derivatives were evaluated for their potential effect on wild-type and mutant p53 activity using a yeast screening assay and on human tumor cell lines. Naturally-occurring carbazoles 1–3 showed the most potent growth inhibitory effects on wild-type p53-expressing cells, being heptaphylline (1) the most promising in all the investigated cell lines. However, compound 1 also showed growth inhibition against non-tumor cells. Conversely, semi-synthetic aminocarbazole 1d showed an interesting growth inhibitory activity in tumor cells expressing both wild-type and mutant p53, exhibiting low growth inhibition on non-tumor cells. The yeast assay showed a potential reactivation of mutant p53 by heptaphylline derivatives, including compound 1d. The results obtained indicate that carbazole alkaloids may represent a promising starting point to search for new mutp53-reactivating agents with promising applications in cancer therapy.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4250
Author(s):  
Xiao-Jing Pang ◽  
Xiu-Juan Liu ◽  
Yuan Liu ◽  
Wen-Bo Liu ◽  
Yin-Ru Li ◽  
...  

FAK is a nonreceptor intracellular tyrosine kinase which plays an important biological function. Many studies have found that FAK is overexpressed in many human cancer cell lines, which promotes tumor cell growth by controlling cell adhesion, migration, proliferation, and survival. Therefore, targeting FAK is considered to be a promising cancer therapy with small molecules. Many FAK inhibitors have been reported as anticancer agents with various mechanisms. Currently, six FAK inhibitors, including GSK-2256098 (Phase I), VS-6063 (Phase II), CEP-37440 (Phase I), VS-6062 (Phase I), VS-4718 (Phase I), and BI-853520 (Phase I) are undergoing clinical trials in different phases. Up to now, there have been many novel FAK inhibitors with anticancer activity reported by different research groups. In addition, FAK degraders have been successfully developed through “proteolysis targeting chimera” (PROTAC) technology, opening up a new way for FAK-targeted therapy. In this paper, the structure and biological function of FAK are reviewed, and we summarize the design, chemical types, and activity of FAK inhibitors according to the development of FAK drugs, which provided the reference for the discovery of new anticancer agents.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 993
Author(s):  
Renuka Raman ◽  
Krishna J. Patel ◽  
Kishu Ranjan

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of the coronavirus disease 2019 (COVID-19) pandemic, which has been a topic of major concern for global human health. The challenge to restrain the COVID-19 pandemic is further compounded by the emergence of several SARS-CoV-2 variants viz. B.1.1.7 (Alpha), B.1.351 (Beta), P1 (Gamma) and B.1.617.2 (Delta), which show increased transmissibility and resistance towards vaccines and therapies. Importantly, there is convincing evidence of increased susceptibility to SARS-CoV-2 infection among individuals with dysregulated immune response and comorbidities. Herein, we provide a comprehensive perspective regarding vulnerability of SARS-CoV-2 infection in patients with underlying medical comorbidities. We discuss ongoing vaccine (mRNA, protein-based, viral vector-based, etc.) and therapeutic (monoclonal antibodies, small molecules, plasma therapy, etc.) modalities designed to curb the COVID-19 pandemic. We also discuss in detail, the challenges posed by different SARS-CoV-2 variants of concern (VOC) identified across the globe and their effects on therapeutic and prophylactic interventions.


2016 ◽  
Vol 128 (11) ◽  
pp. 3706-3710 ◽  
Author(s):  
Anthony F. Rullo ◽  
Kelly J. Fitzgerald ◽  
Viswanathan Muthusamy ◽  
Min Liu ◽  
Cai Yuan ◽  
...  

2014 ◽  
Vol 5 ◽  
pp. 983-993 ◽  
Author(s):  
Marcelo Rodrigues ◽  
Birgit Lengerer ◽  
Thomas Ostermann ◽  
Peter Ladurner

The use of molecular biology tools in the field of bioadhesion is still in its infancy. For new research groups who are considering taking a molecular approach, the techniques presented here are essential to unravelling the sequence of a gene, its expression and its biological function. Here we provide an outline for addressing adhesion-related genes in diverse organisms. We show how to gradually narrow down the number of candidate transcripts that are involved in adhesion by (1) generating a transcriptome and a differentially expressed cDNA list enriched for adhesion-related transcripts, (2) setting up a BLAST search facility, (3) perform an in situ hybridization screen, and (4) functional analyses of selected genes by using RNA interference knock-down. Furthermore, latest developments in genome-editing are presented as new tools to study gene function. By using this iterative multi-technologies approach, the identification, isolation, expression and function of adhesion-related genes can be studied in most organisms. These tools will improve our understanding of the diversity of molecules used for adhesion in different organisms and these findings will help to develop innovative bio-inspired adhesives.


2017 ◽  
Vol 53 (74) ◽  
pp. 10255-10258 ◽  
Author(s):  
Qiang Liu ◽  
Hans. A. V. Kistemaker ◽  
Herman S. Overkleeft ◽  
Gijsbert A. van der Marel ◽  
Dmitri V. Filippov

Total synthesis provided the first independent confirmation of the chemical structure of the branching point in poly(ADP ribose).


Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1836
Author(s):  
Dmitry Tikhonov ◽  
Liudmila Kulikova ◽  
Vladimir Rudnev ◽  
Arthur T. Kopylov ◽  
Amir Taldaev ◽  
...  

Post-translational modification (PTM) leads to conformational changes in protein structure, modulates the biological function of proteins, and, consequently, changes the signature of metabolic transformations and the immune response in the body. Common PTMs are reversible and serve as a mechanism for modulating metabolic trans-formations in cells. It is likely that dysregulation of post-translational cellular signaling leads to abnormal proliferation and oncogenesis. We examined protein PTMs in the blood samples from patients with kidney cancer. Conformational changes in proteins after modification were analyzed. The proteins were analyzed using ultra-high resolution HPLC-MS/MS and structural analysis was performed with the AMBER and GROMACS software packages. Fifteen proteins containing PTMs were identified in blood samples from patients with kidney cancer. For proteins with PDB structures, a comparative analysis of the structural changes accompanying the modifications was performed. Results revealed that PTMs are localized in stable and compact space protein globule motifs that are exposed to a solvent. The phenomenon of modification is accompanied, as a rule, by an increase in the area available for the solvent of the modified amino acid residue and its active environment.


Sign in / Sign up

Export Citation Format

Share Document