The Croonian Lecture, 1971 Cell fusion and the analysis of malignancy

The cells of the body do not normally engage in sex. Nor is it easy to see that sexual activity would greatly benefit them. For sex is ultimately merely a device to facilitate the accumulation in a single individual of favourable mutations occurring separately in different individuals; and since the cells in the body are, at least in large part, genetically identical, the advantages to be gained by genetic exchange are obviously limited. In recent years, however, a technique has been devised that imposes a form of artificial sexuality on somatic cells, and it has been found that somatic cells of widely different genetic constitutions can be induced to undergo genetic amalgamation and exchange. A few years ago, Professor Hayes, in a Leeuwenhoek Lecture (Hayes 1966) described how sex in bacteria is mediated by an infectious particle which produces a change in the cell wall of the ‘male’ bacterium that enables it to make intimate contact with the ‘female’ bacterium. A connexion is then established between the cytoplasms of the two bacteria and through this connexion transfer of genetic material may take place. The imposition of sexuality on somatic cells is achieved by a mechanism which, viewed superficially, is reminiscent of bacterial conjugation. An animal virus, whose normal mode of entry into the cell appears to involve fusion between the viral membrane and the cell membrane, is used to facilitate fusion between the cell membranes of contiguous cells (Okada 1958; Harris & Watkins 1965). Cytoplasmic bridges are thus established which eventually determine the complete coalescence of the cytoplasms of adjacent cells (Schneeberger & Harris 1966). In this way multinucleated cells are formed which contain various numbers of nuclei, and different kinds of nuclei if cells of different kinds are brought together (Harris, Watkins, Ford & Schoefl 1966). The virus now commonly used to produce cell fusion is the Sendai virus, a member of the parainfluenza group of myxoviruses, although many other viruses can achieve the same effect. Unlike the sex particle in bacteria, however, Sendai virus will produce fusion of somatic cells even after its nucleic acid has been destroyed (Okada & Tadokoro 1962; Neff & Enders 1968); the viral envelope is all that is required for this effect. The standard reagent for inducing cell fusion is Sendai virus inactivated by large doses of ultraviolet light or by appropriate treatment with β -propriolactone.

1980 ◽  
Vol 43 (1) ◽  
pp. 103-118
Author(s):  
S. Knutton

The membrane fusion and cell swelling stages of Sendai virus-mediated cell-cell fusion have been studied by thin-section and freeze-fracture electron microscopy. Sites of membrane fusion have been detected in human erythrocytes arrested at the membrane fusion stage of cell fusion and in virtually all cases a fused viral envelope or envelope components has been identified thus providing further direct evidence that cell-viral envelope-cell bridge formation is the membrane fusion event in Sendai virus-induced cell fusion. Radial expansion of a single virus bridge connecting 2 cells is sufficient to produce a fused cell. Membrane redistribution which occurs during this cell swelling stage of the fusion process is often accompanied by the formation of a system of membrane tubules in the plane of expansion of the virus bridge. The tubules originate from points of fusion between the bridging virus envelope and the erythrocyte membrane and also expand radially as cells swell. Ultimately membrane rupture occurs and the tubules appear to break down as small vesicles. When previously observed in cross-sectioned cells these membrane tubules were interpreted as sites of direct membrane fusion. The present study indicates that this interpretation is incorrect and shows that the tubules are generated subsequent to membrane fusion when 2 cells connected by a virus bridge are induced to swell. A mechanism to explain the formation of this system of membrane tubules is proposed.


1979 ◽  
Vol 36 (1) ◽  
pp. 85-96
Author(s):  
S. Knutton

The fusion of human erythrocytes with non-haemolytic ‘1-day’ Sendai virus has been studied by electron microscopy. The mechanism of viral envelope-cell fusion is the same as that described previously for haemolytic ‘3-day’ Sendai virus except that fusion is frequently arrested at an initial stage when 2 segments of smooth linear viral membrane fuse and become incorporated into the erythrocyte membrane. After longer periods of incubation at 37 degrees C, in addition to many partly fused virus particles, long (up to 4 micrometer) lengths of smooth linear viral membrane are seen within the erythrocyte membrane which arise by linear aggregation of shorter (approximately 0.25 micrometer long) segments of smooth linear membrane derived from individual fused viral envelopes. Cell-Cell fusion, as a result of the fusion of a viral envelope with 2 adjacent erythrocytes also occurs but, in the absence of cell swelling, fusion is arrested at this stage with cells joined by one (or more) small cytoplasmic bridges. Typical fused cells are produced if such cells are swollen with hypotonic buffer. These observations provide further evidence that membrane fusion and cell swelling are distinct events in cell fusion and that cell swelling is the driving force both for completing the incorporation of the viral envelope into the cell membrane and for expanding cells connected by small cytoplasmic bridges to form spherical fused cells. Little lateral diffusion of viral envelope components occurs in the absence of cell swelling; in fact, some aggregation of components occurs. Comparison with previous studies using haemolytic ‘3-day’ Sendai virus suggests that virally induced cell swelling perturbs membrane structure so as to allow the rapid lateral diffusion of integrated viral envelope components.


1980 ◽  
Vol 42 (1) ◽  
pp. 153-167
Author(s):  
S. Knutton ◽  
T. Bachi

The role of the haemolytic activity of Sendai virus in cell-cell fusion has been examined in monolayers of human erythrocytes and erythrocyte ghosts fused with either haemolytic or non-haemolytic virus. Morphological observations indicate that cell swelling and haemolysis is a distinct event in cell-cell fusion irrespective of whether it is virally induced or, in the case of non-haemolytic virus, experimentally induced. Osmotic swelling appears to be the driving force by which cells which have established sites of membrane fusion expand such sites to form poly-erythrocytes. Immunofluorescent labelling of viral antigens incorporated into the erythrocyte membrane as a result of viral envelope-cell fusion indicates that diffusion of antigens in the plane of the membrane is restricted in intact erythrocytes and resealed erythrocyte ghosts but not in haemolysed erythrocytes or unsealed ghosts. A perturbation of the erythrocyte membrane resulting from osmotic lysis appears to form a prerequisite for the lateral diffusion of viral elements.


1979 ◽  
Vol 36 (1) ◽  
pp. 73-84
Author(s):  
S. Knutton

The Sendai virus-induced fusion of HeLa cells has been studied by freeze-fracture electron microscopy. Freeze-fracture observations confirm previous scanning electron-microscope studies (1977) and show that at 4 degrees C virus particles bind to the cell surface and that cell agglutination results from the crosslinking by virus particles of microvilli on adjacent cells. Incubation at 37 degrees C initiates a change in viral envelope structure and fusion of ‘altered’ virus particles with the cell plasma membrane. Fusion of a virus particle with two crosslinked cells is probably the membrane fusion event which initiates cell-cell fusion; fusion is completed as a result of virally induced cell swelling. Lateral diffusion of viral envelope components following virus-cell fusion and, in some instances, an aggregation of plasma membrane intramembrane particles occurs in swollen cells. These observations show that the mechanisms of viral envelope-cell and probably cell-cell fusion are the same as have been reported for erythrocytes. Although endocytosis of intact virus particles does occur, the specialized cell-mediated mechanism for fusion of the viral envelope with the cell plasma membrane suggests that this, and not viropexis, is the mechanism of Sendai virus infection.


2021 ◽  
Vol 7 (s4) ◽  
Author(s):  
Darren James Reed

Abstract In various ways the movement and experience of the body is instructed by others. This may be in the dance class or on the playing field. In these interactions, one person claims knowledge of the other’s body and rights to instruct how that body functions, moves, and feels. By undertaking a close analysis of embodied and spoken interaction within performance training sessions from a multimodal conversation analytic perspective, this paper will identify one kind of broad sequential trajectory – from intimate contact to public display - that shows how an instructor claims rights over the internal workings of another’s body by traversing different levels of proximity and sensorial modalities.


2017 ◽  
Vol 28 (26) ◽  
pp. 3801-3814 ◽  
Author(s):  
Sunandini Chandra ◽  
Raju Kalaivani ◽  
Manoj Kumar ◽  
Narayanaswamy Srinivasan ◽  
Debi P. Sarkar

Reconstituted Sendai viral envelopes (virosomes) are well recognized for their promising potential in membrane fusion–mediated delivery of bioactive molecules to liver cells. Despite the known function of viral envelope glycoproteins in catalyzing fusion with cellular membrane, the role of host cell proteins remains elusive. Here, we used two-dimensional differential in-gel electrophoresis to analyze hepatic cells in early response to virosome-induced membrane fusion. Quantitative mass spectrometry together with biochemical analysis revealed that villin, an actin-modifying protein, is differentially up-regulated and phosphorylated at threonine 206—an early molecular event during membrane fusion. We found that villin influences actin dynamics and that this influence, in turn, promotes membrane mixing through active participation of Sendai viral envelope glycoproteins. Modulation of villin in host cells also resulted in a discernible effect on the entry and egress of progeny Sendai virus. Taken together, these results suggest a novel mechanism of regulated viral entry in animal cells mediated by host factor villin.


1981 ◽  
Vol 49 (1) ◽  
pp. 87-97
Author(s):  
D. Rohme

The dose response of Sendai virus-induced cell fusion was studied in 10 mammalian cell lines, comprising 5 continuous and 5 diploid cell lines originating from 5 species. The extent of fusion was calculated using a parameter directly proportional to the number of fusion events (t-parameter). At lower levels of fusion the dose response was found to be based on the same simple kinetic rules in all cell lines and was defined by the formula: t = FS. FAU/(I + FS. FAU), where FS (fusion sensitivity) is a cell-specific constant of the fusion rate and FAU (fusion activity units) is the virus dose. The FS potential of a cell line was determined as the linear regression coefficient of the fusion index (t/(I - t)) on the virus dose. At higher levels of fusion, when the fusion extent reached cell-line-specific maximal levels, the dose response was not as uniform. In general, and particularly in the cases of the diploid cell lines, these maximal levels were directly proportional to the FS potentials. Thus, it was concluded that the FS potential is the basic quantitative feature, which expresses the cellular fusion efficiency. The fact that FS varied extensively between cell lines, but at the same time apparently followed certain patterns (being higher in continuous compared to diploid cell lines and being related to the species of origin of the cells), emphasizes it biological significance as well as its possible usefulness in studies of the efficiency of various molecular interactions in the cell membrane/cytoskeleton system.


2013 ◽  
Vol 19 (1) ◽  
pp. 108-118 ◽  
Author(s):  
Elizabeth B. Smith ◽  
Robert A. Ogert ◽  
David Pechter ◽  
Artjohn Villafania ◽  
Susan J. Abbondanzo ◽  
...  

The health and disease-related biology of the CXCR4 chemokine receptor presents the challenge of finding a small molecule that can bind CXCR4 and block T-cell tropic human immunodeficiency virus type 1 (HIV-1) cell entry, while preserving the ability of CXCR4 to respond to its native ligand, CXCL12. HIV entry into the host cell involves the interaction of the viral envelope glycoprotein gp120 binding to CD4, followed by a rearrangement in gp120, and subsequent interaction with the chemokine receptor CXCR4 or CCR5. These initial events can be re-created in a cell fusion assay that represents a surrogate system, mimicking the early stages of viral entry via these host cell receptors. In the current study, a T-tropic HIV cell fusion assay was established using U2OS cells expressing the envelope glycoprotein gp160 from the T-tropic HIV NL4-3 and HeLa cells expressing CD4 and CXCR4. Detection of the cell fusion event was based on a Gal4/VP16-activated β-lactamase signal and was measured by automated microscopy or laser scanning plate cytometry. Changes in morphology associated with cell fusion were combined with β-lactamase activity to generate results with robust assay statistics in both 384-well and 1536-well plates. Compounds were subsequently characterized by CXCR4 signaling assays to eliminate functional antagonists and allow the identification of a function-sparing HIV entry inhibitor.


Development ◽  
1982 ◽  
Vol 70 (1) ◽  
pp. 29-36
Author(s):  
V. Gremigni ◽  
M. Nigro ◽  
I. Puccinelli

The source and fate of blastema cells are important and still unresolved problems in planarian regeneration. In the present investigation we have attempted to obtain new evidence of cell dedifferentiation-redifferentiation by using a polyploid biotype of Dugesia lugubris s.1. This biotype is provided with a natural karyological marker which allows the discrimination of triploid embryonic and somatic cells from diploid male germ cells and from hexaploid female germ cells. Thanks to this cell mosaic we previously demonstrated that male germ cells take part in blastema formation and are then capable of redifferentiating into somatic cells. In the present investigation sexually mature specimens were transected behind the ovaries and the posterior stumps containing testes were allowed to regenerate the anterior portion of the body. Along with the usual hexaploid oocytes, a small percentage (3.2%) of tetraploid oocytes were produced from regenerated specimens provided with new ovaries. By contrast only hexaploid oocytes were produced from control untransected specimens. The tetraploid oocytes are interpreted as original diploid male germ cells which following the transection take part in blastema formation and then during regeneration redifferentiate into female germ cells thus doubling their chromosome number as usual for undifferentiated cells entering the female gonad in this biotype.


Sign in / Sign up

Export Citation Format

Share Document