scholarly journals Liparid and macrourid fishes of the hadal zone: in situ observations of activity and feeding behaviour

2008 ◽  
Vol 276 (1659) ◽  
pp. 1037-1045 ◽  
Author(s):  
A.J Jamieson ◽  
T Fujii ◽  
M Solan ◽  
A.K Matsumoto ◽  
P.M Bagley ◽  
...  

Using baited camera landers, the first images of living fishes were recorded in the hadal zone (6000–11 000 m) in the Pacific Ocean. The widespread abyssal macrourid Coryphaenoides yaquinae was observed at a new depth record of approximately 7000 m in the Japan Trench. Two endemic species of liparid were observed at similar depths: Pseudoliparis amblystomopsis in the Japan Trench and Notoliparis kermadecensis in the Kermadec Trench. From these observations, we have documented swimming and feeding behaviour of these species and derived the first estimates of hadal fish abundance. The liparids intercepted bait within 100–200 min but were observed to preferentially feed on scavenging amphipods. Notoliparis kermadecensis act as top predators in the hadal food web, exhibiting up to nine suction-feeding events per minute. Both species showed distinctive swimming gaits: P. amblystomopsis (mean length 22.5 cm) displayed a mean tail-beat frequency of 0.47 Hz and mean caudal : pectoral frequency ratio of 0.76, whereas N. kermadecensis (mean length 31.5 cm) displayed respective values of 1.04 and 2.08 Hz. Despite living at extreme depths, these endemic liparids exhibit similar activity levels compared with shallow-water liparids.

Author(s):  
Alan J. Jamieson ◽  
Anne-Nina Lörz ◽  
Toyonobu Fujii ◽  
Imants G. Priede

The genus Princaxelia, Pardaliscidae, is a rarely recorded, infrequently collected and hitherto observed benthic amphipod, typically found at hadal depths (>6000 m) in the Pacific Ocean trenches. Little is known about the behaviour or physiology of this genus. Using a baited camera lander, observations of Princaxelia jamiesoni were made in the Japan Trench (7703 m) and Izu–Ogasawara Trench (9316 m) and of Princaxelia aff. abyssalis in the Kermadec Trench (7966 m) and Tonga Trench (8798 m). These amphipods rapidly intercepted the bait and preyed upon smaller lysianassoid amphipods. Mean absolute swimming speeds for P. jamiesoni and P. aff. abyssalis were 4.16 cm.s−1 ± 1.8 SD and 4.02 cm.s−1 ± 0.87 SD respectively. These amphipods have the capacity for long range swimming, high manoeuvrability in close range, and efficient predatory behaviour. Burst swimming speeds for P. aff. abyssalis were 9 and 10 cm.s−1 with accelerations up to 22–25 cm.s−2.


2000 ◽  
Vol 66 (11) ◽  
pp. 4829-4833 ◽  
Author(s):  
Cleber C. Ouverney ◽  
Jed A. Fuhrman

ABSTRACT Archaea are traditionally thought of as “extremophiles,” but recent studies have shown that marine planktonic Archaea make up a surprisingly large percentage of ocean midwater microbial communities, up to 60% of the total prokaryotes. However, the basic physiology and contribution of Archaea to community microbial activity remain unknown. We have studied Archaea from 200-m depths of the northwest Mediterranean Sea and the Pacific Ocean near California, measuring the archaeal activity under simulated natural conditions (8 to 17°C, dark and anaerobic) by means of a method called substrate tracking autoradiography fluorescence in situ hybridization (STARFISH) that simultaneously detects specific cell types by 16S rRNA probe binding and activity by microautoradiography. In the 200-m-deep Mediterranean and Pacific samples, cells binding the archaeal probes made up about 43 and 14% of the total countable cells, respectively. Our results showed that the Archaea are active in the uptake of dissolved amino acids from natural concentrations (nanomolar) with about 60% of the individuals in the archaeal communities showing measurable uptake. Bacteria showed a similar proportion of active cells. We concluded that a portion of these Archaea is heterotrophic and also appears to coexist successfully with Bacteria in the same water.


2015 ◽  
Vol 32 (1) ◽  
pp. 131-143 ◽  
Author(s):  
David Halpern ◽  
Dimitris Menemenlis ◽  
Xiaochun Wang

AbstractThe impact of data assimilation on the transports of eastward-flowing Equatorial Undercurrent (EUC) and North Equatorial Countercurrent (NECC) in the Pacific Ocean from 145°E to 95°W during 2004–05 and 2009–11 was assessed. Two Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2), solutions were analyzed: one with data assimilation and one without. Assimilated data included satellite observations of sea surface temperature and ocean surface topography, in which the sampling patterns were approximately uniform over the 5 years, and in situ measurements of subsurface salinity and temperature profiles, in which the sampling patterns varied considerably in space and time throughout the 5 years. Velocity measurements were not assimilated. The impact of data assimilation was considered significant when the difference between the transports computed with and without data assimilation was greater than 5.5 × 106 m3 s−1 (or 5.5 Sv; 1 Sv ≡ 106 m3 s−1) for the EUC and greater than 5.0 Sv for the NECC. In addition, the difference of annual-mean transports computed from 3-day-averaged data was statistically significant at the 95% level. The impact of data assimilation ranged from no impact to very substantial impact when data assimilation increased the EUC transport and decreased the NECC transport. The study’s EUC results had some correspondence with other studies and no simple agreement or disagreement pattern emerged among all studies of the impact of data assimilation. No comparable study of the impact of data assimilation on the NECC has been made.


Science ◽  
2006 ◽  
Vol 314 (5806) ◽  
pp. 1773-1776 ◽  
Author(s):  
J. Sibert ◽  
J. Hampton ◽  
P. Kleiber ◽  
M. Maunder

Zootaxa ◽  
2016 ◽  
Vol 4178 (1) ◽  
pp. 138 ◽  
Author(s):  
REBECA GASCA ◽  
STEVEN H.D. HADDOCK

A female ovigerous specimen of the rare deep-living hyperiid Megalanceoloides remipes (Barnard, 1932) was collected with a remotely operated submersible (ROV) at a depth of 2,094 m in the Farallon Basin, Gulf of California. The specimen was found to be symbiotically associated with the siphonophore Apolemia sp. Eschscholtz, 1829. Hitherto, this species was known only from two other specimens, one from the South Atlantic and another from the Indian Ocean; the present record is the first from the Pacific Ocean. Previous descriptions lacked morphological details of different appendages; these data are provided here. In addition, we present the first data on its symbiotic association from in situ observations. The colors of the hyperiid and of some parts of the Apolemid were very similar, thus supporting the notion that some hyperiids tend to mimic the color of its host. 


2009 ◽  
Vol 22 ◽  
pp. 173-179 ◽  
Author(s):  
G. Zambrano ◽  
R. Abarca del Rio ◽  
J.-F. Cretaux ◽  
B. Reid

Abstract. Lago General Carrera (Chile) also called Lago Buenos Aires (Argentina) or originally Chelenko by the native habitants of the region is located in Patagonia on the Chilean-Argentinean border. It is the largest lake in Chile with a surface area of 1850 km2. The lake is of glacial/tectonic origin and surrounded by the Andes mountain range. The lake drains primarily to the Pacific Ocean to the west, through the Baker River (one of Chile's largest rivers), and intermittently eastward to the Atlantic Ocean. We report ongoing results from an investigation of the seasonal hydrological cycle of the lake basin. The contribution by river input through snowmelt from the Andes is of primary importance, though the lack of water input by ungaged rivers is also critical. We present the main variables involved in the water balance of Lake General Carrera/Buenos Aires/Chelenko, such as influent and effluent river flows, precipitation, and evaporation, all this based mostly in in-situ information.


2021 ◽  
Vol 13 (21) ◽  
pp. 11575
Author(s):  
Mauricio Carvache-Franco ◽  
Aldo Alvarez-Risco ◽  
Wilmer Carvache-Franco ◽  
Orly Carvache-Franco ◽  
Alfredo Estrada-Merino ◽  
...  

The objective of this empirical study is to determine: (a) the underlying variables of the travel motivations related to a coastal city; and (b) the motivational dimensions that predict return, recommendation, and saying positive things about a coastal city as loyalty variables. This project utilized an in situ investigation carried out in Lima, a coastal city located on the Pacific Ocean near Peru with important natural and cultural attractions. The researchers used 381 questionnaires that were analyzed through factor analysis, in addition to the stepwise multiple regression method. Reesults identified six underlying variables or motivational factors: “culture and nature”, “authentic coastal experience”, “novelty and social interaction”, “learning”, “sun and beach”, and “nightlife”. Regarding loyalty, the “novelty and social interaction” dimension is the most important predictor of return and the “authentic coastal experience” dimension is the most important predictor of recommending and saying positive things about a coastal city. To motivate a return, events could be created on the beach to motivate novelty, as well as increase recommendations and the amount of positive things said about the destination; educational and sports activities and workshops could also be created with the community and the coastal environment. Results can be used by firms for preparing information for new customers in order to increase trip intention and improve guides for destination marketing organizations (DMOs).


Sign in / Sign up

Export Citation Format

Share Document