scholarly journals Binding space and time through action

2015 ◽  
Vol 282 (1805) ◽  
pp. 20150381 ◽  
Author(s):  
N. Binetti ◽  
N. Hagura ◽  
C. Fadipe ◽  
A. Tomassini ◽  
V. Walsh ◽  
...  

Space and time are intimately coupled dimensions in the human brain. Several lines of evidence suggest that space and time are processed by a shared analogue magnitude system. It has been proposed that actions are instrumental in establishing this shared magnitude system. Here we provide evidence in support of this hypothesis, by showing that the interaction between space and time is enhanced when magnitude information is acquired through action. Participants observed increases or decreases in the height of a visual bar (spatial magnitude) while judging whether a simultaneously presented sequence of acoustic tones had accelerated or decelerated (temporal magnitude). In one condition (Action), participants directly controlled the changes in bar height with a hand grip device, whereas in the other (No Action), changes in bar height were externally controlled but matched the spatial/temporal profile of the Action condition. The sign of changes in bar height biased the perceived rate of the tone sequences, where increases in bar height produced apparent increases in tone rate. This effect was amplified when the visual bar was actively controlled in the Action condition, and the strength of the interaction was scaled by the magnitude of the action. Subsequent experiments ruled out that this was simply explained by attentional factors, and additionally showed that a monotonic mapping is also required between grip force and bar height in order to bias the perception of the tones. These data provide support for an instrumental role of action in interfacing spatial and temporal quantities in the brain.

Mind Shift ◽  
2021 ◽  
pp. 63-79
Author(s):  
John Parrington

This chapter evaluates the basic unit of the human brain: the nerve cell, or neuron. These cells are also the main units of the peripheral nervous system, which sends messages from the brain to the other tissues and organs that make up our bodies. Neurons are the most well-known cells in the brain but they are not the only type of cell in this organ. The other main types are the glial cells, also known as neuroglia. Recent studies of the role of glial cells in the brain are revealing potentially important differences between humans and other species in the functions of these cells. The chapter then turns to the large-scale structure of the brain. The most dramatic changes in brain size and structure occurred in the final phase of human evolutionary change. Indeed, Neanderthals had brains similar in size to those of modern humans. An important feature of the human brain is that a larger fraction of its growth occurs outside the womb. Although humans reach adult brain size in childhood, brain development continues for decades afterwards.


Much has been said at the symposium about the pre-eminent role of the brain in the continuing emergence of man. Tobias has spoken of its explosive enlargement during the last 1 Ma, and how much of its enlargement in individual ontogeny is postnatal. We are born before our brains are fully grown and ‘wired up ’. During our long adolescence we build up internal models of the outside world and of the relations of parts of our bodies to it and to one another. Neurons that are present at birth spread their dendrites and project axons which acquire their myelin sheaths, and establish innumerable contacts with other neurons, over the years. New connections are formed; genetically endowed ones are stamped in or blanked off. People born without arms may grow up to use their toes in skills that are normally manual. Tobias, Darlington and others have stressed the enormous survival value of adaptive behaviour and the ‘positive feedback’ relation between biological and cultural evolution. The latter, the unique product of the unprecedentedly rapid biological evolution of big brains, advances on a time scale unknown to biological evolution.


2019 ◽  
pp. 44-71
Author(s):  
Riane Eisler

This chapter introduces a new perspective on the role of love in human evolution and human development. The bonds of love, whether between parent and child, lovers, or close friends, may all have a common biological root, activating neurochemicals that make us feel good. Like other human capacities, such as consciousness, learning, and creativity, love has a long and fascinating evolutionary history. Indeed, the evolution of love appears to be integral to the development of our human brain and hence to much that distinguishes us from other species. Moreover, love plays a vital, though still largely unrecognized, role in human development, with evidence accumulating about the negative effects of love deprivation as well as the benefits of love. But whether or not our needs for meaning and love are met, and whether or not our capacities for creativity and love are expressed, are largely determined by the interaction of biology and culture—specifically, the degree to which a culture or subculture orients to the partnership or domination end of the continuum.


2021 ◽  
pp. 102-106
Author(s):  
Claudia Menzel ◽  
Gyula Kovács ◽  
Gregor U. Hayn-Leichsenring ◽  
Christoph Redies

Most artists who create abstract paintings place the pictorial elements not at random, but arrange them intentionally in a specific artistic composition. This arrangement results in a pattern of image properties that differs from image versions in which the same pictorial elements are randomly shuffled. In the article under discussion, the original abstract paintings of the author’s image set were rated as more ordered and harmonious but less interesting than their shuffled counterparts. The authors tested whether the human brain distinguishes between these original and shuffled images by recording electrical brain activity in a particular paradigm that evokes a so-called visual mismatch negativity. The results revealed that the brain detects the differences between the two types of images fast and automatically. These findings are in line with models that postulate a significant role of early (low-level) perceptual processing of formal image properties in aesthetic evaluations.


2020 ◽  
pp. jmedgenet-2020-106830
Author(s):  
Yan Zhang ◽  
Shiwu Li ◽  
Xiaoyan Li ◽  
Yongfeng Yang ◽  
Wenqiang Li ◽  
...  

The association between NOTCH4 and schizophrenia has been repeatedly reported. However, the results from different genetic studies are inconsistent, and the role of NOTCH4 in schizophrenia pathogenesis remains unknown. Here, we provide convergent lines of evidence that support NOTCH4 as a schizophrenia risk gene. We first performed a meta-analysis and found that a genetic variant (rs2071287) in NOTCH4 was significantly associated with schizophrenia (a total of 125 848 subjects, p=8.31×10−17), with the same risk allele across all tested samples. Expression quantitative trait loci (eQTL) analysis showed that rs2071287 was significantly associated with NOTCH4 expression (p=1.08×10−14) in human brain tissues, suggesting that rs2071287 may confer schizophrenia risk through regulating NOTCH4 expression. Sherlock integrative analysis using a large-scale schizophrenia GWAS and eQTL data from human brain tissues further revealed that NOTCH4 was significantly associated with schizophrenia (p=4.03×10−7 in CMC dataset and p=3.06×10−6 in xQTL dataset), implying that genetic variants confer schizophrenia risk through modulating NOTCH4 expression. Consistently, we found that NOTCH4 was significantly downregulated in brains of schizophrenia patients compared with controls (p=2.53×10−3), further suggesting that dysregulation of NOTCH4 may have a role in schizophrenia. Finally, we showed that NOTCH4 regulates proliferation, self-renewal, differentiation and migration of neural stem cells, suggesting that NOTCH4 may confer schizophrenia risk through affecting neurodevelopment. Our study provides convergent lines of evidence that support the involvement of NOTCH4 in schizophrenia. In addition, our study also elucidates a possible mechanism for the role of NOTCH4 in schizophrenia pathogenesis.


2005 ◽  
Vol 28 (6) ◽  
pp. 763-763 ◽  
Author(s):  
Itiel E. Dror

Dichotomizing perceptions, by those that have an objective reality and those that do not, is rejected. Perceptions are suggested to fall along a multidimensional continuum in which neither end is totally “pure.” At the extreme ends, perceptions neither have an objective reality without some subjectivity, nor, at the other end, even as hallucinations, are they totally dissociated from reality.


2017 ◽  
Vol 114 (46) ◽  
pp. 12285-12290 ◽  
Author(s):  
Gerwin Schalk ◽  
Christoph Kapeller ◽  
Christoph Guger ◽  
Hiroshi Ogawa ◽  
Satoru Hiroshima ◽  
...  

Neuroscientists have long debated whether some regions of the human brain are exclusively engaged in a single specific mental process. Consistent with this view, fMRI has revealed cortical regions that respond selectively to certain stimulus classes such as faces. However, results from multivoxel pattern analyses (MVPA) challenge this view by demonstrating that category-selective regions often contain information about “nonpreferred” stimulus dimensions. But is this nonpreferred information causally relevant to behavior? Here we report a rare opportunity to test this question in a neurosurgical patient implanted for clinical reasons with strips of electrodes along his fusiform gyri. Broadband gamma electrocorticographic responses in multiple adjacent electrodes showed strong selectivity for faces in a region corresponding to the fusiform face area (FFA), and preferential responses to color in a nearby site, replicating earlier reports. To test the causal role of these regions in the perception of nonpreferred dimensions, we then electrically stimulated individual sites while the patient viewed various objects. When stimulated in the FFA, the patient reported seeing an illusory face (or “facephene”), independent of the object viewed. Similarly, stimulation of color-preferring sites produced illusory “rainbows.” Crucially, the patient reported no change in the object viewed, apart from the facephenes and rainbows apparently superimposed on them. The functional and anatomical specificity of these effects indicate that some cortical regions are exclusively causally engaged in a single specific mental process, and prompt caution about the widespread assumption that any information scientists can decode from the brain is causally relevant to behavior.


2013 ◽  
Vol 33 (8) ◽  
pp. 1295-1306 ◽  
Author(s):  
Matthew TJ Lowe ◽  
Eric H Kim ◽  
Richard LM Faull ◽  
David L Christie ◽  
Henry J Waldvogel

The phosphocreatine/creatine kinase (PCr/CK) system in the brain is defined by the expression of two CK isozymes: the cytosolic brain-type CK (BCK) and the ubiquitous mitochondrial CK (uMtCK). The system plays an important role in supporting cellular energy metabolism by buffering adenosine triphosphate (ATP) consumption and improving the flux of high-energy phosphoryls around the cell. This system is well defined in muscle tissue, but there have been few detailed studies of this system in the brain, especially in humans. Creatine is known to be important for neurologic function, and its loss from the brain during development can lead to mental retardation. This study provides the first detailed immunohistochemical study of the expression pattern of BCK and uMtCK in the human brain. A strikingly dissociated pattern of expression was found: uMtCK was found to be ubiquitously and exclusively expressed in neuronal populations, whereas BCK was dominantly expressed in astrocytes, with a low and selective expression in neurons. This pattern indicates that the two CK isozymes are not widely coexpressed in the human brain, but rather are selectively expressed depending on the cell type. These results suggest that the brain cells may use only certain properties of the PCr/CK system depending on their energetic requirements.


2015 ◽  
Vol 112 (49) ◽  
pp. E6798-E6807 ◽  
Author(s):  
Maxwell A. Bertolero ◽  
B. T. Thomas Yeo ◽  
Mark D’Esposito

Network-based analyses of brain imaging data consistently reveal distinct modules and connector nodes with diverse global connectivity across the modules. How discrete the functions of modules are, how dependent the computational load of each module is to the other modules’ processing, and what the precise role of connector nodes is for between-module communication remains underspecified. Here, we use a network model of the brain derived from resting-state functional MRI (rs-fMRI) data and investigate the modular functional architecture of the human brain by analyzing activity at different types of nodes in the network across 9,208 experiments of 77 cognitive tasks in the BrainMap database. Using an author–topic model of cognitive functions, we find a strong spatial correspondence between the cognitive functions and the network’s modules, suggesting that each module performs a discrete cognitive function. Crucially, activity at local nodes within the modules does not increase in tasks that require more cognitive functions, demonstrating the autonomy of modules’ functions. However, connector nodes do exhibit increased activity when more cognitive functions are engaged in a task. Moreover, connector nodes are located where brain activity is associated with many different cognitive functions. Connector nodes potentially play a role in between-module communication that maintains the modular function of the brain. Together, these findings provide a network account of the brain’s modular yet integrated implementation of cognitive functions.


Blood ◽  
2009 ◽  
Vol 114 (19) ◽  
pp. 4243-4252 ◽  
Author(s):  
Abhai K. Tripathi ◽  
Wei Sha ◽  
Vladimir Shulaev ◽  
Monique F. Stins ◽  
David J. Sullivan

Abstract Cerebral malaria is a severe multifactorial condition associated with the interaction of high numbers of infected erythrocytes to human brain endothelium without invasion into the brain. The result is coma and seizures with death in more than 20% of cases. Because the brain endothelium is at the interface of these processes, we investigated the global gene responses of human brain endothelium after the interaction with Plasmodium falciparum–infected erythrocytes with either high- or low-binding phenotypes. The most significantly up-regulated transcripts were found in gene ontology groups comprising the immune response, apoptosis and antiapoptosis, inflammatory response, cell-cell signaling, and signal transduction and nuclear factor κB (NF-κB) activation cascade. The proinflammatory NF-κB pathway was central to the regulation of the P falciparum–modulated endothelium transcriptome. The proinflammatory molecules, for example, CCL20, CXCL1, CXCL2, IL-6, and IL-8, were increased more than 100-fold, suggesting an important role of blood-brain barrier (BBB) endothelium in the innate defense during P falciparum–infected erythrocyte (Pf-IRBC) sequestration. However, some of these diffusible molecules could have reversible effects on brain tissue and thus on neurologic function. The inflammatory pathways were validated by direct measurement of proteins in brain endothelial supernatants. This study delineates the strong inflammatory component of human brain endothelium contributing to cerebral malaria.


Sign in / Sign up

Export Citation Format

Share Document