scholarly journals A phosphorus threshold for mycoheterotrophic plants in tropical forests

2017 ◽  
Vol 284 (1848) ◽  
pp. 20162093 ◽  
Author(s):  
Merlin Sheldrake ◽  
Nicholas P. Rosenstock ◽  
Daniel Revillini ◽  
Pål Axel Olsson ◽  
S. Joseph Wright ◽  
...  

The majority of terrestrial plants associate with arbuscular mycorrhizal (AM) fungi, which typically facilitate the uptake of limiting mineral nutrients by plants in exchange for plant carbon. However, hundreds of non-photosynthetic plant species—mycoheterotrophs—depend entirely on AM fungi for carbon as well as mineral nutrition. Mycoheterotrophs can provide insight into the operation and regulation of AM fungal relationships, but little is known about the factors, fungal or otherwise, that affect mycoheterotroph abundance and distribution. In a lowland tropical forest in Panama, we conducted the first systematic investigation into the influence of abiotic factors on the abundance and distribution of mycoheterotrophs, to ask whether the availability of nitrogen and phosphorus altered the occurrence of mycoheterotrophs and their AM fungal partners. Across a natural fertility gradient spanning the isthmus of Panama, and also in a long-term nutrient-addition experiment, mycoheterotrophs were entirely absent when soil exchangeable phosphate concentrations exceeded 2 mg P kg −1 . Experimental phosphorus addition reduced the abundance of AM fungi, and also reduced the abundance of the specific AM fungal taxa required by the mycoheterotrophs, suggesting that the phosphorus sensitivity of mycoheterotrophs is underpinned by the phosphorus sensitivity of their AM fungal hosts. The soil phosphorus concentration of 2 mg P kg −1 also corresponds to a marked shift in tree community composition and soil phosphatase activity across the fertility gradient, suggesting that our findings have broad ecological significance.

2021 ◽  
Author(s):  
Soibam Helena Devi ◽  
Ingudam Bhupenchandra ◽  
Soibam Sinyorita ◽  
S.K. Chongtham ◽  
E. Lamalakshmi Devi

The 20thcentury witnessed an augmentation in agricultural production, mainly through the progress and use of pesticides, fertilizers containing nitrogen and phosphorus, and developments in plant breeding and genetic skills. In the naturally existing ecology, rhizospheric soils have innumerable biological living beings to favor the plant development, nutrient assimilation, stress tolerance, disease deterrence, carbon seizing and others. These organisms include mycorrhizal fungi, bacteria, actinomycetes, etc. which solubilize nutrients and assist the plants in up taking by roots. Amongst them, arbuscular mycorrhizal (AM) fungi have key importance in natural ecosystem, but high rate of chemical fertilizer in agricultural fields is diminishing its importance. The majority of the terrestrial plants form association with Vesicular Arbuscular Mycorrhiza (VAM) or Arbuscular Mycorrhizal fungi (AMF). This symbiosis confers benefits directly to the host plant’s growth and development through the acquisition of Phosphorus (P) and other mineral nutrients from the soil by the AMF. They may also enhance the protection of plants against pathogens and increases the plant diversity. This is achieved by the growth of AMF mycelium within the host root (intra radical) and out into the soil (extra radical) beyond. Proper management of Arbuscular Mycorrhizal fungi has the potential to improve the profitability and sustainability of agricultural systems. AM fungi are especially important for sustainable farming systems because AM fungi are efficient when nutrient availability is low and when nutrients are bound to organic matter and soil particles.


Author(s):  
Valeriy G. Yakubenko ◽  
Anna L. Chultsova

Identification of water masses in areas with complex water dynamics is a complex task, which is usually solved by the method of expert assessments. In this paper, it is proposed to use a formal procedure based on the application of the method of optimal multiparametric analysis (OMP analysis). The data of field measurements obtained in the 68th cruise of the R/V “Academician Mstislav Keldysh” in the summer of 2017 in the Barents Sea on the distribution of temperature, salinity, oxygen, silicates, nitrogen, and phosphorus concentration are used as a data for research. A comparison of the results with data on the distribution of water masses in literature based on expert assessments (Oziel et al., 2017), allows us to conclude about their close structural similarity. Some differences are related to spatial and temporal shifts of measurements. This indicates the feasibility of using the OMP analysis technique in oceanological studies to obtain quantitative data on the spatial distribution of different water masses.


1994 ◽  
Vol 30 (5) ◽  
pp. 177-186 ◽  
Author(s):  
Karin Sundblad ◽  
Andrzej Tonderski ◽  
Jacek Rulewski

Nitrogen and phosphorus concentration data representing samples collected once a month for nine months at 13 locations along the Vistula River are considered in a preliminary discussion of the sources of the nutrients transported to the Baltic Sea. Concentrations in relation to flow data indicated substantial differences between subbasins. Based on those differences, on the area-specific nutrient loss for a six-month period and on the wastewater discharge in each subbasin, four regions could be recognized in the river basin: i) the southern region with a large impact of point sources, ii) the south central region, where diffuse sources seemed to be of major importance, iii) the north central region with a combined effect of point and diffuse sources, and retention in two reservoirs, iv) the northern region where point sources seemed to be the dominating source, at least for phosphorus. Our results illustrate the importance of differences in phosphorus retention between the basins. Long-term retention along the course of the river, particularly in the two reservoirs, must be estimated to allow proper source apportionment in the Vistula basin. Concentration decreases in the Wloclawek Reservoir varied between 44 and 68% for P, and 11 to 37% for N, in the months with significant retention. In some months, however, concentrations increased, indicating a release of nutrients.


Author(s):  
Yuequn Lai ◽  
Jing Zhang ◽  
Yongyu Song ◽  
Zhaoning Gong

Remote sensing retrieval is an important technology for studying water eutrophication. In this study, Guanting Reservoir with the main water supply function of Beijing was selected as the research object. Based on the measured data in 2016, 2017, and 2019, and Landsat-8 remote sensing images, the concentration and distribution of chlorophyll-a in the Guanting Reservoir were inversed. We analyzed the changes in chlorophyll-a concentration of the reservoir in Beijing and the reasons and effects. Although the concentration of chlorophyll-a in the Guanting Reservoir decreased gradually, it may still increase. The amount and stability of water storage, chlorophyll-a concentration of the supply water, and nitrogen and phosphorus concentration change are important factors affecting the chlorophyll-a concentration of the reservoir. We also found a strong correlation between the pixel values of adjacent reservoirs in the same image, so the chlorophyll-a estimation model can be applied to each other.


2014 ◽  
Vol 26 (2) ◽  
pp. 213-220 ◽  
Author(s):  
XU huiping ◽  
◽  
YANG Guijun ◽  
ZHOU Jian ◽  
QIN Boqiang ◽  
...  

Author(s):  
Xiaojuan Zhang ◽  
Junru Zhao ◽  
Jie Zhang ◽  
Shijing Su ◽  
Luqiang Huang ◽  
...  

Abstract This paper presented a mathematical model to describe the production of fucoxanthin by alga Thalassiosira weissflogi ND-8 in photobioreactor. Our interest was focused on characterizing the effects of nitrogen and phosphorus on the growth of microalgae and on the synthesis of fucoxanthin. The rate equations of microalgal growth, fucoxanthin synthesis and substrate consumptions were formulated. Kinetic parameters of the model and their sensitivities with respect to model output were estimated. The predicted results were compared with experimental data, which showed that this model closely agrees with actual experiment and is able to reflect the growth and metabolism characteristics of microalgae. Our results also indicated that nitrogen plays a major role in the synthesis of fucoxanthin, and the synthesis of fucoxanthin is partially linearly related to the consumption of nitrogen. Phosphorus is primarily consumed in the growth and metabolism of microalgal cells, while excessive phosphorus concentration has an inhibitory effect on the growth of microalgae.


Jurnal BIOMA ◽  
2014 ◽  
Vol 10 (2) ◽  
pp. 11
Author(s):  
Dhany Ardiansyah ◽  
Arini Karunia ◽  
Talita Auliandina ◽  
Dien Anugerah Putri ◽  
Mohamad Isnin Noer

There is high spatial variation in physical and chemical characteristics both within and between streams, some of which has been linked to natural factors. Stream characteristics affect many biological and physical processes. Leptophryne borbonica is stream-dependent toad that spend their life completely in or around stream. The purpose of this study was to determine the effect of habitat characteristics on abundance of Leptophryne borbonica in Bodogol, Sukabumi, West Java. Survey was conducted to obtain data on 27 until 29 June 2013 along Cisuren stream of Bodogol. Parameters that used in this study were conductivity, temperature, humidity, and salinity. The findings showed that all physical factors of stream have weak correlation with the abundance of Leptophryne borbonica. Abiotic factors that forming an ecosystem could affect the abundance and distribution of a amphibians species, because amphibians are sensitive to environmental change. Our result suggested that chemical characteristics along this stream were within the range of fundamental niche of Leptophryne borbonica. However, the slightly different in the number of individuals obtained among plots indicated that there were other factors that may be at play.


Author(s):  
Mengjing Guo ◽  
Tiegang Zhang ◽  
Jing Li ◽  
Zhanbin Li ◽  
Guoce Xu ◽  
...  

Nitrogen and phosphorus are essential for plant growth and are the primary limiting nutrient elements. The loss of nitrogen and phosphorus in agricultural systems can cause the eutrophication of natural water bodies. In this paper, a field simulated rainfall experiment was conducted in a typical small watershed of the Danjiang River to study the nutrient loss process of nitrogen and phosphorus in slope croplands subjected to different crops and tillage measures. The characteristics of the runoff process and nutrient migration of different slope treatments were studied, which were the bare-land (BL, as the control), peanut monoculture (PL), corn monoculture (CL), bare land (upper slope) mixed with peanut monoculture (lower slope) (BP), corn and peanut intercropping (TCP), corn and soybean intercropping (TCS), downslope ridge cultivation (BS) slope, and straw-mulched (SC), respectively. The results showed that the runoff of CL, SC, TCS, BS, BP, PL and TCP slope types were 93%, 75%, 51%, 39%, 28%, 12%, and 6% of the those of the bare land, respectively. The total nitrogen concentration in runoff on different slope types decreased in the order of BP > PL > BS > SC > TCP > BL > CL > TCS. The BL was characterized with the highest NRL-TN (the loss of total nitrogen per unit area), with the value of 1.188 kg/hm2, while those of the TCP is the smallest with the value of 0.073 kg/hm2. The total phosphorus concentration in runoff decreasd in the order of BS > BP > PL > BL > TCP > SC > CL > TCS. The PRL-TP (the loss of total phosphorus per unit area) of BL is the largest (0.016 kg/hm2), while those of TCP is the smallest (0.001 kg/hm2). These indicate that the loss of nitrogen is much higer than that of phosphorus. The loss of nitrogen in runoff is dominated by nitrate nitrogen, which accounts for 54.4%–78.9% of TN. Slope croplands in the water source area should adopt the tillage measures of TCP and PL.These measures can reduce 85% of the runoff of nitrogen and phosphorus compared to the bare land. The results may assist in agricultural non-point source pollution control and help promote improved management of the water environment in the Danjiang River’s water source area.


Sign in / Sign up

Export Citation Format

Share Document