scholarly journals Reducing Nitrogen and Phosphorus Losses from Different Crop Types in the Water Source Area of the Danjiang River, China

Author(s):  
Mengjing Guo ◽  
Tiegang Zhang ◽  
Jing Li ◽  
Zhanbin Li ◽  
Guoce Xu ◽  
...  

Nitrogen and phosphorus are essential for plant growth and are the primary limiting nutrient elements. The loss of nitrogen and phosphorus in agricultural systems can cause the eutrophication of natural water bodies. In this paper, a field simulated rainfall experiment was conducted in a typical small watershed of the Danjiang River to study the nutrient loss process of nitrogen and phosphorus in slope croplands subjected to different crops and tillage measures. The characteristics of the runoff process and nutrient migration of different slope treatments were studied, which were the bare-land (BL, as the control), peanut monoculture (PL), corn monoculture (CL), bare land (upper slope) mixed with peanut monoculture (lower slope) (BP), corn and peanut intercropping (TCP), corn and soybean intercropping (TCS), downslope ridge cultivation (BS) slope, and straw-mulched (SC), respectively. The results showed that the runoff of CL, SC, TCS, BS, BP, PL and TCP slope types were 93%, 75%, 51%, 39%, 28%, 12%, and 6% of the those of the bare land, respectively. The total nitrogen concentration in runoff on different slope types decreased in the order of BP > PL > BS > SC > TCP > BL > CL > TCS. The BL was characterized with the highest NRL-TN (the loss of total nitrogen per unit area), with the value of 1.188 kg/hm2, while those of the TCP is the smallest with the value of 0.073 kg/hm2. The total phosphorus concentration in runoff decreasd in the order of BS > BP > PL > BL > TCP > SC > CL > TCS. The PRL-TP (the loss of total phosphorus per unit area) of BL is the largest (0.016 kg/hm2), while those of TCP is the smallest (0.001 kg/hm2). These indicate that the loss of nitrogen is much higer than that of phosphorus. The loss of nitrogen in runoff is dominated by nitrate nitrogen, which accounts for 54.4%–78.9% of TN. Slope croplands in the water source area should adopt the tillage measures of TCP and PL.These measures can reduce 85% of the runoff of nitrogen and phosphorus compared to the bare land. The results may assist in agricultural non-point source pollution control and help promote improved management of the water environment in the Danjiang River’s water source area.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chaoguang Gu ◽  
Feifei Li ◽  
Jibo Xiao ◽  
Shuyi Chu ◽  
Shuang Song ◽  
...  

Abstract The vegetative growth and remediation potential of Rotala rotundifolia, a novel submerged aquatic plant, for eutrophic waters were investigated on different sediments, and under a range of nitrogen concentrations. Rotala Rotundifolia grew better on silt than on sand and gravel in terms of plant height, tiller number and biomass accumulation. Percent increment of biomass was enhanced at low water nitrogen (ammonium nitrogen concentration ≤10 mg/L). The maximum total nitrogen and total phosphorus removals in the overlying water were between 54% to 66% and 42% to 57%, respectively. Nitrogen contents in the sediments increased with increasing water nitrogen levels, whereas, nitrogen contents in the plant tissues showed no apparent regularity, and the greatest value was obtained at ammonium nitrogen concentration 15 mg/L. Both phosphorus contents in the sediments and tissues of plants were not affected significantly by additional nitrogen supply. Direct nitrogen uptake by plants was in the range of 16% to 39% when total phosphorus concentration was 1.0 mg/L. These results suggested that Rotala Rotundifolia can be used to effectively remove nitrogen and phosphorus in eutrophic waters.


1994 ◽  
Vol 30 (5) ◽  
pp. 177-186 ◽  
Author(s):  
Karin Sundblad ◽  
Andrzej Tonderski ◽  
Jacek Rulewski

Nitrogen and phosphorus concentration data representing samples collected once a month for nine months at 13 locations along the Vistula River are considered in a preliminary discussion of the sources of the nutrients transported to the Baltic Sea. Concentrations in relation to flow data indicated substantial differences between subbasins. Based on those differences, on the area-specific nutrient loss for a six-month period and on the wastewater discharge in each subbasin, four regions could be recognized in the river basin: i) the southern region with a large impact of point sources, ii) the south central region, where diffuse sources seemed to be of major importance, iii) the north central region with a combined effect of point and diffuse sources, and retention in two reservoirs, iv) the northern region where point sources seemed to be the dominating source, at least for phosphorus. Our results illustrate the importance of differences in phosphorus retention between the basins. Long-term retention along the course of the river, particularly in the two reservoirs, must be estimated to allow proper source apportionment in the Vistula basin. Concentration decreases in the Wloclawek Reservoir varied between 44 and 68% for P, and 11 to 37% for N, in the months with significant retention. In some months, however, concentrations increased, indicating a release of nutrients.


2006 ◽  
Vol 63 (5) ◽  
pp. 433-438 ◽  
Author(s):  
Gustavo Gonzaga Henry-Silva ◽  
Antonio Fernando Monteiro Camargo

The effluents from fish farming can increase the quantity of suspended solids and promote the enrichment of nitrogen and phosphorus in aquatic ecosystems. In this context, the aim of this work was to evaluate the efficiency of three species of floating aquatic macrophytes (Eichhornia crassipes, Pistia stratiotes and Salvinia molesta) to treat effluents from Nile tilapia culture ponds. The effluent originated from a 1,000-m² pond stocked with 2,000 male Nile tilapia Oreochromis niloticus. The treatment systems consisted of 12 experimental tanks, three tanks for each macrophyte species, and three control tanks (without plants). Water samples were collected from the: (i) fish pond source water, (ii) effluent from fish pond and (iii) effluents from the treatment tanks. The following water variables were evaluated: turbidity, total and dissolved nitrogen, ammoniacal-N, nitrate-N, nitrite-N, total phosphorus and dissolved phosphorus. E. crassipes and P. stratiotes were more efficient in total phosphorus removal (82.0% and 83.3%, respectively) and total nitrogen removal (46.1% and 43.9%, respectively) than the S. molesta (72.1% total phosphorus and 42.7% total nitrogen) and the control (50.3% total phosphorus and 22.8% total nitrogen), indicating that the treated effluents may be reused in the aquaculture activity.


2012 ◽  
Vol 518-523 ◽  
pp. 2895-2899 ◽  
Author(s):  
Ju Hong Zhan ◽  
Sha Deng ◽  
Zhao Xin Li ◽  
Yu Luo ◽  
Ting Ting Zhao ◽  
...  

Sediment dredging is currently the most commonly selected option for getting rid of contaminated sediments. In this study, the effects of estuary dredging on removing nitrogen and phosphorus were investigated by comparing the different vertical nutrient content between the dredged and un-dredged areas in Dianchi Lake. The results showed that the contents of total nitrogen and total phosphorus in the un-dredged areas were relatively higher than that in dredged areas. Besides, the contents of bio-available nitrogen and phosphorus represented the similar results, only a few dredged spots showed a higher potential releasing capacity. Therefore, with the reduction of internal nutrient loading, it indicated that sediment dredging might be an effective and reliable way to improve such eutrophic lakes.


2019 ◽  
Vol 28 (2) ◽  
pp. 257-267
Author(s):  
Marek Kalenik

The model investigations of sewage purification were carried out in a medium sand bed with an assisting hydro-anthracite layer with thickness of 0.10 and 0.20 m. It has been observed that the effectiveness of sewage purification related to basic qualitative parameters (total suspended solids – TSS, BOD5, COD, total nitrogen, total phosphorus) is in accordance with the Polish standards on sewage disposal into grounds and surface water. It has been stated that the medium sand soil bed with the 0.20-meter thick assisting hydro-anthracite layer shows higher effectiveness of sewage purification than the 0.10 m thick assisting layer. This application in the medium sand soil bed increased the removal efficiency regarding TSS by 3.1%, total nitrogen by 29.4%, ammonia nitrogen by 1.2% and total phosphorus by 23.0%, and reduction efficiency regarding BOD5 by 1.5% and COD by 11.3% with relation to the 0.10-meter thick assisting hydro-anthracite layer (all percentages – in average). The investigations confirm that the hydro-anthracite with the granulation of 1.8–2.5 mm can be used to assist in removal of nitrogen and phosphorus compounds from sewages


2013 ◽  
Vol 4 (1) ◽  
pp. 12-19
Author(s):  
Hong Diep Nguyen ◽  
Glino Gallardo Wenresti ◽  
Kumar Tripathi Nitin ◽  
Hoang Minh Truong

Cobia fish cage is the most popular marine culture species raised in Phu Quoc Island, Vietnam. For its sustainable development, there is a need to determine the carrying capacity to avoid negative marine environmental impact in the future. This study was carried out to collect water samples each two months at the lowest and highest tides at four points around the farming area in Rach Vem, Phu Quoc Island, Kien Giang Province from February to October 2011. Water quality in cobia cage culture was surveyed to assess the environmental status of coastal aquaculture areas including seven parameters such as DO, COD, BOD, TSS, TN, TP and Chlorophyll-a. These parameters are suitable to rear cobia fish cage in this area. Nitrogen and phosphorus are considered as the principal nutrients produced by the cobia fish farm and affecting water environment. This study found that the carrying capacity for fish cage farming in the area is 290.96 to 727.81 tons (based on total nitrogen) and 428.64 to 1,383.88 tons (based on total phosphorus) from February to Au-gust 2011. The maximum number of cobia cages should be, based on total nitrogen, from 64 to 266 and, based on total phosphorus, from 94 to 253. Moreover, this study examined the possibility of remote sensing and geographic information system (GIS) technique based on Object-based Image Analysis (OBIA) method by THEOS imagery for mapping of cage culture facilities and detect the location for cobia cage culture in study area. Cá bớp nuôi lồng bè là một trong những loài cá nuôi phổ biến khu vực ven biển Phú Quốc, Việt nam. Nhằm phát triển bền vững vùng ven biển, đề tài thực hiện đã xác định và đánh giá hiện trạng môi trường nước và sức tải môi trường của nghề nuôi cá bớp lồng bè ở đảo Phú Quốc. Nghiên cứu này được thực hiện thông qua việc thu mẫu môi trường nước mỗi 2 tháng theo mức nước triều cao nhất và thấp nhất tại 4 điểm quanh khu vực nuôi tại ấp Rạch Vẹm, huyện Phú Quốc, tỉnh Kiên Giang từ tháng 02-10/2011. Chất lượng nước khu vực nuôi thủy sản cũng được khảo sát với 7 chỉ tiêu gồm DO, COD, BOD, TSS, TN, TP, Chlorophyll-a. Các thông số chất lượng môi trường này phù hợp nuôi cá bớp tại khu vực nghiên cứu dựa trên tiêu chuẩn chất lượng môi trường. Trong nghiên cứu này, đạm và lân là 2 thông số được sử dụng để tính toán sức tải môi trường. Sức tải môi trường được tính toán cho khu vực nuôi cá bớp dao động khoảng từ 290.96 tấn đến 727.81 tấn (tính trên hàm lượng đạm tổng số) và từ 428,64 tấn đến 1.383,88 tấn (tính trên hàm lượng lân tổng số) trong thời gian từ tháng 2 đến tháng 10 năm 2011. Số lượng tối đa lồng bè nuôi cá bớp khoảng từ 64 đến 266 (đạm tổng số) và từ 94 đến 253 (lân tổng số) dựa vào phân tích hồi quy tương quan. Bên cạnh đó, công nghệ viễn thám và hệ thống thông tin địa lý (GIS) đã được ứng dụng bằng cách sử dụng ảnh THEOS để xác định vị trí và phân bố không gian khu vực nuôi cá lồng bè dựa trên phương pháp phân tích đối tượng theo hướng (OBIA).


2013 ◽  
Vol 448-453 ◽  
pp. 864-867
Author(s):  
Yi Xin Xu ◽  
Hua Yong Zhang ◽  
Xiang Xu ◽  
Jing Zhao ◽  
Fei Li

Eco-exergy which is a thermodynamic indicator is applied to assess the ecosystem health status of QiXing Lake. And effects of nitrogen and phosphorus on ecosystem health status have been investigated. The results indicate that the ecosystem which contains macrophytes has the better health status than that does not contain macrophytes when they have the same concentration of nitrogen or phosphorus. The ecosystem health status decreased as the concentration of total nitrogen increased when the ecosystem contains macrophytes. However, the ecosystem health status has not significant change as the concentration of total nitrogen increased when the ecosystem does not contains macrophytes. It has the same law for total phosphorus.


Phytotaxa ◽  
2020 ◽  
Vol 470 (1) ◽  
pp. 1-30
Author(s):  
ROSALINA STANCHEVA ◽  
NATHANIEL V. KRISTAN ◽  
WILLIAM B. KRISTAN III ◽  
ROBERT G. SHEATH

The diatom genus Planothidium from streams and rivers in California was studied by applying the most current species designations. Twenty Planothidium taxa were identified in total, including a previously undescribed species, Planothidium californicum. Extensive light and scanning electron microscopic documentation is provided to support consistent further identification of the taxa for the local stream bioassessment. The most common and abundant species, recorded across the entire state, were P. frequentissimum, P. lanceolatum, P. victorii, P. cryptolanceolatum, P. amphibium, and P. minutissimum. Species ranges and species-weighted averages for the main anthropogenic stressors, i.e. chloride, conductivity, dissolved organic carbon, total nitrogen and total phosphorus were determined for the eleven most common Planothdium taxa. Statistically significant differences among species weighted averages were determined by randomization test. Of these eleven species, P. delicatulum, P. robustum, P. engelbrechtii, P. frequentissimum and P. victorii had the highest weighted averages along the chloride and conductivity gradients. P. potapovae, Planothidium sp. 1, P. amphibium, and P. engelbrechtii had narrow nutrient ranges and lowest weighted averages for total nitrogen and phosphorus, making them significantly different from P. delicatulum which had highest total nitrogen average and from P. minutissimum, associated with highest total phosphorus average level. Given that there were differences in associations with environmental variables between recently described species, it is important to use the new taxonomy when using diatoms in bioassessment work.


Author(s):  
Agnieszka Tórz ◽  
Arkadiusz Nędzarek

The variability in concentrations of chosen nitrogen and phosphorus forms in the Oder River estuary in 1999-2002The Oder River creates one of the largest estuaries in Poland. The estuary can be divided into three zones, each with a different hydrochemical regime: the Pomeranian Bay (salt water habitat), the Szczecin Lagoon (brackish water habitat), the Oder River up to the Widuchowa section (transitional environment - brackish and typical freshwater). The Pomeranian Bay was characterized by the lowest concentration of nutrients throughout the research series in comparison to the other regions. It had a low nitrogen to phosphorus proportion and the highest stability of variability in total nitrogen concentration. The Szczecin Lagoon was characterized by a higher concentration of nutrient loads in comparison to the Pomeranian Bay, by a lower nitrogen and phosphorus proportion than the Oder waters, and by the high stability of variability of concentrations of mineral nitrogen and total nitrogen. As the "nutrient trap" for the Oder estuarine system, the Oder River, with its highest nutrient concentration, is characterized by the highest stability of variability of total nitrogen concentration.


Sign in / Sign up

Export Citation Format

Share Document