scholarly journals Adaptive shaping of the behavioural and neuroendocrine phenotype during adolescence

2017 ◽  
Vol 284 (1849) ◽  
pp. 20162784 ◽  
Author(s):  
Tobias D. Zimmermann ◽  
Sylvia Kaiser ◽  
Michael B. Hennessy ◽  
Norbert Sachser

Environmental conditions during early life can adaptively shape the phenotype for the prevailing environment. Recently, it has been suggested that adolescence represents an additional temporal window for adaptive developmental plasticity, though supporting evidence is scarce. Previous work has shown that male guinea pigs living in large mixed-sex colonies develop a low-aggressive phenotype as part of a queuing strategy that is adaptive for integrating into large unfamiliar colonies. By contrast, males living in pairs during adolescence become highly aggressive towards strangers. Here, we tested whether the high-aggressive phenotype is adaptive under conditions of low population density, namely when directly competing with a single opponent for access to females. For that purpose, we established groups of one pair-housed male (PM), one colony-housed male (CM) and two females. PMs directed more aggression towards the male competitor and more courtship and mating towards females than did CMs. In consequence, PMs attained the dominant position in most cases and sired significantly more offspring. Moreover, they showed distinctly higher testosterone concentrations and elevated cortisol levels, which probably promoted enhanced aggressiveness while mobilizing necessary energy. Taken together, our results provide the clearest evidence to date for adaptive shaping of the phenotype by environmental influences during adolescence.

2021 ◽  
Author(s):  
Michael Le Pepke ◽  
Thomas Kvalnes ◽  
Peter Sjolte Ranke ◽  
Yimen G. Araya-Ajoy ◽  
Jonathan Wright ◽  
...  

1.Environmental conditions during early-life development can have lasting effects on individual quality and fitness. Telomere length (TL) may correlate with early-life conditions and may be an important mediator or biomarker of individual quality or pace-of-life, as periods of increased energy demands can increase telomere attrition due to oxidative stress. Thus, knowledge of the mechanisms that generate variation in TL, and the relation between TL and fitness, is important in understanding the role of telomeres in ecology and life-history evolution. 2.Here, we investigate how environmental conditions and morphological traits are associated with early-life TL and if TL predicts natal dispersal probability or components of fitness in two populations of wild house sparrows (Passer domesticus). 3.We measured morphological traits and blood TL in 2746 nestlings from 20 cohorts (1994-2013) and retrieved data on weather conditions. We monitored population fluctuations, and individual survival and reproductive output using field observations and genetic pedigrees. We then used generalized linear mixed-effects models to test which factors affected TL in early-life, and if TL predicted dispersal propensity, or was associated with recruitment probability, mortality risk, or reproductive success.4.We found a negative effect of population density on TL, but only in one of the populations. There was a curvilinear association between TL and the maximum daily North Atlantic Oscillation (NAO) index during incubation, suggesting that there are optimal weather conditions that result in the longest TL. Dispersers tended to have shorter telomeres than non-dispersers. TL did not predict survival, but we found a tendency for individuals with short telomeres to have higher annual reproductive success.5.Our study showed how early-life TL is shaped by effects of growth, weather conditions and population density, supporting that environmental stressors negatively affect TL in wild populations. In addition, TL may be a mediator or biomarker of individual pace-of-life, with higher dispersal rates and annual reproduction tending to be associated with shorter early-life TL in this study. However, clear associations between early-life TL and individual fitness seems difficult to establish and may differ between different populations in the wild.


Author(s):  
Muhammed Jamsheer K ◽  
Manoj Kumar ◽  
Vibha Srivastava

AbstractThe Snf1-related protein kinase 1 (SnRK1) is the plant homolog of the heterotrimeric AMP-activated protein kinase/sucrose non-fermenting 1 (AMPK/Snf1), which works as a major regulator of growth under nutrient-limiting conditions in eukaryotes. Along with its conserved role as a master regulator of sugar starvation responses, SnRK1 is involved in controlling the developmental plasticity and resilience under diverse environmental conditions in plants. In this review, through mining and analyzing the interactome and phosphoproteome data of SnRK1, we are highlighting its role in fundamental cellular processes such as gene regulation, protein synthesis, primary metabolism, protein trafficking, nutrient homeostasis, and autophagy. Along with the well-characterized molecular interaction in SnRK1 signaling, our analysis highlights several unchartered regions of SnRK1 signaling in plants such as its possible communication with chromatin remodelers, histone modifiers, and inositol phosphate signaling. We also discuss potential reciprocal interactions of SnRK1 signaling with other signaling pathways and cellular processes, which could be involved in maintaining flexibility and homeostasis under different environmental conditions. Overall, this review provides a comprehensive overview of the SnRK1 signaling network in plants and suggests many novel directions for future research.


2014 ◽  
Vol 72 (2) ◽  
pp. 543-557 ◽  
Author(s):  
S. J. Geist ◽  
A. Kunzmann ◽  
H. M. Verheye ◽  
A. Eggert ◽  
A. Schukat ◽  
...  

Abstract Early life history (ELH) traits are key to understand variable recruitment success and hence the stock size of marine fish. One of the currently most puzzling ecosystems in this regard is the northern part of the Benguela Current upwelling system off Namibia. Here, populations of the formerly dominant pelagic species, sardine and anchovy, failed to recover during the last three decades after a dramatic decline. In contrast, Cape horse mackerel, Trachurus capensis, maintained a constant population size. Warming of the system and shoaling of hypoxic zones together with feedback loops within an altered foodweb are discussed to be responsible for this regime shift. In this study, we address the role of larval traits for the successful performance of the T. capensis population under the present environmental conditions with the focus on feeding ecology. We investigated seasonal variations of the geographical distribution, growth rate, feeding ecology, and nutritional condition of their ELH stages and examined relationships with water temperature, dissolved oxygen concentration, and micro-zooplankton composition. T. capensis' ELH stages showed a wide spatial and seasonal distribution, a preference for higher water temperatures (18–21°C) and presence over a wide range of dissolved oxygen concentrations (0.13–6.35 ml O2 l−1). Feeding success was high and mainly different groups of Copepoda were targeted, which were strongly size selected. The high dietary importance of micro-copepods during large parts of the larval phase indicates successful exploitation of this food source, which has increased in abundance during the last decade. It also explains observed best nutritional conditions at temperatures between 18 and 21°C, since these small copepods are commonly associated with warmer temperatures. Altogether, these traits enhance the species' probability to encounter suitable environments for the survival of their ELH stages, which is likely to lead to their high recruitment success in the northern Benguela ecosystem.


2020 ◽  
Author(s):  
Carol Wang ◽  
John Attia ◽  
Stephen Lye ◽  
Wendy Oddy ◽  
Lawrence Beilin ◽  
...  

Abstract Background: It is well established that genetics, environment, and interplay between them play crucial roles in adult disease. We aimed to evaluate the role of genetics, early life nutrition, and interaction between them, on optimal adult health. Methods: As part of a large international consortium (n~154,000), we identified 60 SNPs associated with both birthweight and adult disease. Utilising the Raine Study, we developed a birthweight polygenic score (BW-PGS) based the 60 SNPs and examined relationships between BW-PGS and adulthood cardiovascular risk factors, specifically evaluating interactions with early life nutrition. Findings: Healthy nutrition was beneficial for all individuals; longer duration of any breastfeeding was associated with lower BMI and lower Systolic Blood Pressure in those with higher BW-PGS. Interpretation: Optimal breastfeeding offers the greatest benefit to reduce adult obesity and hypertension in those genetically predisposed to high birthweight. This provides an example of how precision medicine in early life can improve adult health.


Author(s):  
Mary Jane West-Eberhard

A book on developmental plasticity needs a chapter on assessment, if only to show that adaptive environmental assessment occurs. Skepticism regarding the ability of nonhuman organisms to assess conditions well enough to make adaptive decisions has a long history in evolutionary biology, and it has been an important barrier to understanding the evolution of adaptive developmental plasticity. It is worth briefly reviewing this history in order to understand certain preconceptions about assessment that still persist. In the nineteenth century, critics of Darwin’s theory of sexual selection (Darwin, 1871) balked at the idea of an “aesthetic sense” in lowly creatures that would enable female choice of mates (representative papers are reprinted and discussed in Bajema, 1984). Later, the barrier persisted for other reasons. Even though naturalists routinely used the condition-appropriate expression of phenotypic traits to support adaptation hypotheses—a practice that assumes adaptive assessment of conditions as it is defined here—theoretically inclined biologists paid little attention to the question of facultatively expressed traits. Part of the difficulty lay in the problem of explaining how adaptive assessment could evolve within the framework of conventional genetics. Theodosius Dobzhansky, one of the twentieth century’s leading evolutionary biologists, acknowledged this unresolved problem in remarks following a lecture by J. S. Kennedy on the phase polyphenisms of migratory locusts (Kennedy, 1961). Dobzhansky referred to the “challenge to a geneticist” of explaining the adaptive switch between the sedentary and the migratory phenotypes of the locusts, which had been shown to be largely independent of genotype. He suggested that an extrachromosomal factor may be involved, a symbiotic microorganism that acts as a “plasmagene” whose multiplication would eventually stimulate phase change. Although Dobzhansky’s proposal was no more preposterous than some of the regulatory devices that have actually been discovered, Kennedy (1961) minced no words in his reply to this suggestion: . . . [W]e need not feel obliged to invoke a second organism to explain [phase polymorphism] unless we are reluctant to concede an important part to the environment as well as to heredity in moulding development. . . .


1999 ◽  
Vol 89 (6) ◽  
pp. 470-475 ◽  
Author(s):  
Jos M. Raaijmakers ◽  
Robert F. Bonsall ◽  
David M. Weller

The role of antibiotics in biological control of soilborne pathogens, and more generally in microbial antagonism in natural disease-suppressive soils, often has been questioned because of the indirect nature of the supporting evidence. In this study, a protocol for high pressure liquid chromatography/mass spectrometry is described that allowed specific identification and quantitation of the antibiotic 2,4-diacetylphloroglucinol (Phl) produced by naturally occurring fluorescent Pseudomonas spp. on roots of wheat grown in a soil suppressive to take-all of wheat. These results provide, for the first time, biochemical support for the conclusion of previous work that Phl-producing fluorescent Pseudomonas spp. are key components of the natural biological control that operates in take-all—suppressive soils in Washington State. This study also demonstrates that the total amount of Phl produced on roots of wheat by P. fluorescens strain Q2-87, at densities ranging from approximately 105 to 107 CFU/g of root, is proportional to its rhizosphere population density and that Phl production per population unit is a constant (0.62 ng/105 CFU). Thus, Phl production in the rhizosphere of wheat is strongly related to the ability of the introduced strain to colonize the roots.


Sign in / Sign up

Export Citation Format

Share Document