scholarly journals Basal polyphagan beetles in mid-Cretaceous amber from Myanmar: biogeographic implications and long-term morphological stasis

2019 ◽  
Vol 286 (1894) ◽  
pp. 20182175 ◽  
Author(s):  
Chenyang Cai ◽  
John F. Lawrence ◽  
Shûhei Yamamoto ◽  
Richard A. B. Leschen ◽  
Alfred F. Newton ◽  
...  

The origin and early evolutionary history of polyphagan beetles have been largely based on evidence from the derived and diverse ‘core Polyphaga’, whereas little is known about the species-poor basal polyphagan lineages, which include Scirtoidea (Clambidae, Decliniidae, Eucinetidae, and Scirtidae) and Derodontidae. Here, we report two new species Acalyptomerus thayerae sp. nov. and Sphaerothorax uenoi sp. nov., both belonging to extant genera of Clambidae, from mid-Cretaceous Burmese amber. Acalyptomerus thayerae has a close affinity to A. herbertfranzi , a species currently occurring in Mesoamerica and northern South America. Sphaerothorax uenoi is closely related to extant species of Sphaerothorax , which are usually collected in forests of Nothofagus of Australia, Chile, and New Zealand. The discovery of two Cretaceous species from northern Myanmar indicates that both genera had lengthy evolutionary histories, originated at least by the earliest Cenomanian, and were probably more widespread than at present. Remarkable morphological similarities between fossil and living species suggest that both genera changed little over long periods of geological time. The long-term persistence of similar mesic microhabitats such as leaf litter may account for the 99 Myr morphological stasis in Acalyptomerus and Sphaerothorax . Additionally, the extinct staphylinoid family Ptismidae is proposed as a new synonym of Clambidae, and its only included species Ptisma zasukhae is placed as incertae sedis within Clambidae.

2001 ◽  
Vol 32 (4) ◽  
pp. 381-392 ◽  
Author(s):  
Nils Møller Andersen ◽  
David Grimaldi

AbstractSemiaquatic bugs (Hemiptera: Gerromorpha) comprise about 1,800 extant species classified in eight families. So far, 38 fossil species belonging to six families have been described or recorded, most of Cenozoic age. Knowledge about the evolutionary history of the major groups of Gerromorpha is seriously hampered by the scarcity of well-preserved Mesozoic fossils, especially from the Cretaceous. The present paper reports on a well-preserved semiaquatic bug from amber collected in the northern part of Myanmar (Burma). The source of this fossiliferous amber was previously considered to be Eocene in age, but recent evidence indicates that it originated in the Middle Cretaceous (Turonian-Cenomanian), or 100-90 Ma. The fossil species is described as Carinametra burmensis gen. et sp. n. The presence of three pairs of cephalic trichobothria, a prolonged head, long slender antennae and legs, reduced wing venation, etc., places the fossil in the gerromorphan family Hydrometridae or water measurers. Other characters suggest a close relationship with the two extant genera of the most basal of the hydrometrid subfamilies, Heterocleptinae. We present and discuss the available evidence used in the dating of Burmese amber. Finally, we discuss the phylogenetic, paleobiological, and biogeographic significance of the new fossil.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jan Batelka ◽  
Jakub Prokop

Abstract Background During the Mesozoic, there were many insects in several holometabolous orders (Neuroptera, Mecoptera and Diptera) with elongated mouthparts adapted for feeding on nectar. The evolutionary history of the megadiverse order Coleptera, which has a great diversity of mouthparts and feeding strategies, is well documented since early Permian with a significant peak in diversity in the Triassic. Currently, however, there is no evidence that in the Mesozoic these beetles fed on nectar despite the recorded specializations for pollination of flowering plants in several families since the mid-Cretaceous. Results Here we describe a new wedge-shaped beetle Melanosiagon serraticornis gen. et sp. nov. from mid-Cretaceous Burmese amber attributed to Macrosiagonini (Ripiphoridae: Ripiphorinae), which has elongated galea comparable to that in the extant parasitoid genus Macrosiagon, and a well known example of adaptation for nectar feeding in Coleoptera. Furthermore, Salignacicola gen. nov. is established for Macrosiagon ebboi Perrichot, Nel et Néraudeau, 2004, based on the holotype found in mid-Cretaceous amber from France. Systematic positions of both newly established genera are discussed. A list of potential wasp and bee hosts of Ripiphorinae from the Mesozoic is provided. Conclusions This study presents evidence of the earliest occurrence of specialized nectar feeding mouthparts in Coleoptera. Melanosiagon serraticornis is closely related to extant Macrosiagonini. In all genera belonging to subfamily Ripiphorinae the primary larvae are adapted for parasitism on aculeate Hymenoptera (bees and wasps) and adults are associated with blossoms of flowering plants, in terms of their specialized morphology. Adults of Macrosiagon visit blossoms of flowering plants to obtain nectar and lay eggs from which the hatching larvae attack visiting wasps and bees. An association with flowers of some tropical trees is already corroborated in some extant species. Interestingly the larvae of Ripiphorinae are also found in Burmese amber. Thus, both life stages of the mid-Cretaceous Ripiphorinae indicate a close association of this lineage with flowering trees.


2020 ◽  
Vol 3 (1) ◽  
pp. 036-040
Author(s):  
ZIWEI YIN ◽  
DEYAO ZHOU

The tribe Scydmaenini is the second most diverse group of the ant-like stone beetle subfamily Scydmaeninae, with more than 730 extant species classified in seven extant genera (Newton, 2019). However, confirmed fossil records important for elucidating the evolutionary history of the tribe are extremely rare, represented by only two species previously reported from mid-Cretaceous Myanmar amber (Yin et al., 2018; Yin & Cai, 2019). Provided in this paper is the description of a third fossil species of Scydmaenini, again from Burmese amber, which sheds new light on the palaeodiversity and morphological disparity of this group during its early evolutionary stage.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weizhao Yang ◽  
Nathalie Feiner ◽  
Catarina Pinho ◽  
Geoffrey M. While ◽  
Antigoni Kaliontzopoulou ◽  
...  

AbstractThe Mediterranean basin is a hotspot of biodiversity, fuelled by climatic oscillation and geological change over the past 20 million years. Wall lizards of the genus Podarcis are among the most abundant, diverse, and conspicuous Mediterranean fauna. Here, we unravel the remarkably entangled evolutionary history of wall lizards by sequencing genomes of 34 major lineages covering 26 species. We demonstrate an early (>11 MYA) separation into two clades centred on the Iberian and Balkan Peninsulas, and two clades of Mediterranean island endemics. Diversification within these clades was pronounced between 6.5–4.0 MYA, a period spanning the Messinian Salinity Crisis, during which the Mediterranean Sea nearly dried up before rapidly refilling. However, genetic exchange between lineages has been a pervasive feature throughout the entire history of wall lizards. This has resulted in a highly reticulated pattern of evolution across the group, characterised by mosaic genomes with major contributions from two or more parental taxa. These hybrid lineages gave rise to several of the extant species that are endemic to Mediterranean islands. The mosaic genomes of island endemics may have promoted their extraordinary adaptability and striking diversity in body size, shape and colouration, which have puzzled biologists for centuries.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jouko Rikkinen ◽  
David A. Grimaldi ◽  
Alexander R. Schmidt

AbstractMyxomycetes constitute a group within the Amoebozoa well known for their motile plasmodia and morphologically complex fruiting bodies. One obstacle hindering studies of myxomycete evolution is that their fossils are exceedingly rare, so evolutionary analyses of this supposedly ancient lineage of amoebozoans are restricted to extant taxa. Molecular data have significantly advanced myxomycete systematics, but the evolutionary history of individual lineages and their ecological adaptations remain unknown. Here, we report exquisitely preserved myxomycete sporocarps in amber from Myanmar, ca. 100 million years old, one of the few fossil myxomycetes, and the only definitive Mesozoic one. Six densely-arranged stalked sporocarps were engulfed in tree resin while young, with almost the entire spore mass still inside the sporotheca. All morphological features are indistinguishable from those of the modern, cosmopolitan genus Stemonitis, demonstrating that sporocarp morphology has been static since at least the mid-Cretaceous. The ability of myxomycetes to develop into dormant stages, which can last years, may account for the phenotypic stasis between living Stemonitis species and this fossil one, similar to the situation found in other organisms that have cryptobiosis. We also interpret Stemonitis morphological stasis as evidence of strong environmental selection favouring the maintenance of adaptations that promote wind dispersal.


Author(s):  
Gordon Grigg ◽  
David Kirshner

Biology and Evolution of Crocodylians is a comprehensive review of current knowledge about the world's largest and most famous living reptiles. Gordon Grigg's authoritative and accessible text and David Kirshner's stunning interpretive artwork and colour photographs combine expertly in this contemporary celebration of crocodiles, alligators, caimans and gharials. This book showcases the skills and capabilities that allow crocodylians to live how and where they do. It covers the biology and ecology of the extant species, conservation issues, crocodylian–human interaction and the evolutionary history of the group, and includes a vast amount of new information; 25 per cent of 1100 cited publications have appeared since 2007. Richly illustrated with more than 500 colour photographs and black and white illustrations, this book will be a benchmark reference work for crocodylian biologists, herpetologists and vertebrate biologists for years to come. Winner of the 2015 Whitley Medal.


1984 ◽  
Vol 8 ◽  
pp. 182-198
Author(s):  
Catherine Badgley

The evolutionary history of humans is well understood in outline, compared to that of many other groups of mammals. But human evolution remains enigmatic in its details, and these are compelling both scientifically and personally because they relate to the biological uniqueness of humans. Humans are placed in the primate family Hominidae, which, in traditional classifications, contains a single living species, Homo sapiens. The closest living relatives of humans are great apes: the chimpanzees Pan paniscus and Pan troglodytes, the gorilla Gorilla gorilla, and the orangutan Pongo pygmaeus. These apes have traditionally been placed in the family Pongidae as the sister group of Hominidae. Living Hominidae and Pongidae, together with Hylobatidae (gibbons) comprise the modern representatives of the primate suborder Hominoidea.


1938 ◽  
Vol 57 ◽  
pp. 221-227
Author(s):  
James Small

Applying Udny Yule's formulæ (1924) to the Compositæ, Small (1937) found that the average ages in doubling periods (Dp-ages) of the tribes of Compositæ, when plotted against a time-scale, gave points on an exponential curve called the BAT curve. If this curve is characteristic of average families of Angiosperms it should be possible to place the Dp-ages of tribes within other families on this curve as plotted against geological time, and thus obtain an order of geological origin which is quite independent of actual fossil records and which can be checked against any facts known concerning the evolutionary history of the family.


2020 ◽  
Vol 70 (1) ◽  
pp. 67-85 ◽  
Author(s):  
Michael J Landis ◽  
Deren A R Eaton ◽  
Wendy L Clement ◽  
Brian Park ◽  
Elizabeth L Spriggs ◽  
...  

Abstract Phylogeny, molecular sequences, fossils, biogeography, and biome occupancy are all lines of evidence that reflect the singular evolutionary history of a clade, but they are most often studied separately, by first inferring a fossil-dated molecular phylogeny, then mapping on ancestral ranges and biomes inferred from extant species. Here we jointly model the evolution of biogeographic ranges, biome affinities, and molecular sequences, while incorporating fossils to estimate a dated phylogeny for all of the 163 extant species of the woody plant clade Viburnum (Adoxaceae) that we currently recognize in our ongoing worldwide monographic treatment of the group. Our analyses indicate that while the major Viburnum lineages evolved in the Eocene, the majority of extant species originated since the Miocene. Viburnum radiated first in Asia, in warm, broad-leaved evergreen (lucidophyllous) forests. Within Asia, we infer several early shifts into more tropical forests, and multiple shifts into forests that experience prolonged freezing. From Asia, we infer two early movements into the New World. These two lineages probably first occupied warm temperate forests and adapted later to spreading cold climates. One of these lineages (Porphyrotinus) occupied cloud forests and moved south through the mountains of the Neotropics. Several other movements into North America took place more recently, facilitated by prior adaptations to freezing in the Old World. We also infer four disjunctions between Asia and Europe: the Tinus lineage is the oldest and probably occupied warm forests when it spread, whereas the other three were more recent and in cold-adapted lineages. These results variously contradict published accounts, especially the view that Viburnum radiated initially in cold forests and, accordingly, maintained vessel elements with scalariform perforations. We explored how the location and biome assignments of fossils affected our inference of ancestral areas and biome states. Our results are sensitive to, but not entirely dependent upon, the inclusion of fossil biome data. It will be critical to take advantage of all available lines of evidence to decipher events in the distant past. The joint estimation approach developed here provides cautious hope even when fossil evidence is limited. [Biogeography; biome; combined evidence; fossil pollen; phylogeny; Viburnum.]


Phytotaxa ◽  
2016 ◽  
Vol 272 (4) ◽  
pp. 235
Author(s):  
JOSEPH MOHAN ◽  
JEFFERY R. STONE ◽  
CHRISTOPHER J CAMPISANO

Paleolake Hadar was an expansive lake in the lower Awash Valley of Ethiopia’s Afar Depression that existed periodically through the Late Pliocene. The sedimentary deposits from this ancient lake (Hadar Formation) have broad importance because a significant number of hominin fossils have been recovered from the formation. Samples of the Hadar Formation lacustrine sequence were collected from sediment cores extracted as part of the Hominin Sites and Paleolakes Drilling Project (HSPDP). A paleoecological study of the HSPDP Northern Awash (Hadar Formation) material has unearthed three novel species of Bacillariophyta (diatoms) from diatomites that appear periodically in the cores. The Hadar Formation assemblage represents a newly revealed excerpt from the evolutionary history of freshwater diatoms in East Africa during the Piacenᴢian age (2.59–3.60 Ma). The HSPDP Northern Awash diatom species are compared to previously reported diatoms from Pliocene outcrops, modern and fossil core material from Lake Malawi, and extant species. Here we describe two new species of Aulacoseira and one of Lindavia. Taxonomic treatment of two diatom varieties reported by previous researchers as Melosira are transferred into Aulacoseira herein.


Sign in / Sign up

Export Citation Format

Share Document