I. The physical properties of homologues and isomers

1878 ◽  
Vol 26 (179-184) ◽  
pp. 238-247 ◽  

Observations of the physical properties of chemical compounds have been very numerous; in many, however, the object aimed at has been merely the definition of the substances in question, and the results lay claim to no great accuracy. In others, data have been required for the solution of purely physical problems, and but little attention has been paid to the chemical nature of the substances employed. In comparatively few has equal importance been attached to both the physical and chemical aspects of the question. If, then, we attempt to compare the physical properties of a series of compounds presenting very similar chemical properties, we find that in the case of one or two members of the series our knowledge is tolerably omplete, but that with regard to the others little is known but their approximate boiling-points and densities.

1972 ◽  
Vol 50 (12) ◽  
pp. 1961-1965 ◽  
Author(s):  
Hugh J. Anderson ◽  
H. Nagy

3-Pyrrolecarbaldehyde (1) has been prepared on an increased scale. A general survey of the physical and chemical properties of the 3-aldehyde and 1-methyl-3-pyrrolecarbaldehyde has been carried out. The results indicate similar chemical properties to those of the corresponding 2-aldehydes. The physical properties are generally predictable on the basis of earlier studies.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1476
Author(s):  
Ana Cristina Ferrão ◽  
Raquel P. F. Guiné ◽  
Elsa Ramalhosa ◽  
Arminda Lopes ◽  
Cláudia Rodrigues ◽  
...  

Hazelnuts are one of the most appreciated nuts worldwide due to their unique organoleptic and nutritional characteristics. The present work intended to analyse several physical and chemical properties of different hazelnut varieties grown in Portugal, namely Tonda de Giffoni, Grada de Viseu, Segorbe, Longa de Espanha, Butler, Gunslebert, and Negreta. In general, the results revealed statistically significant differences between the varieties under study. The Gunslebert had more elongated hazelnuts and with heavier shelled fruits, while the kernels of the Grada de Viseu revealed to be heavier. Grada de Viseu was harder in the shell, Gunslebert had a harder core, and Segorbe was more resistant to fracture. Fat was the more representative component for all varieties and in some cases the values of moisture and water activity were over the recommended amount (≥0.62). Tonda de Giffoni was the variety with the highest induction time, indicating the highest oxidation stability. Moreover, discriminant analysis revealed that the variables more important to distinguish the varieties were protein (λ = 0.007) and water activity (λ = 0.010). The results of this study help to better understand the differences between some hazelnut varieties that are cultivated in Portugal, which gives important hints for all players in the hazelnut sector.


2021 ◽  
pp. 1-10
Author(s):  
Anshu Siwach ◽  
Siddhartha Kaushal ◽  
Ratul Baishya

Abstract Mosses are one of the most important and dominant plant communities, especially in the temperate biome, and play a significant role in ecosystem function and dynamics. They influence the water, energy and element cycle due to their unique ecology and physiology. The present study was undertaken in three different temperate forest sites in the Garhwal Himalayas, viz., Triyuginarayan (Kedarnath Wildlife Sanctuary (KWLS)), Chakrata, and Kanasar forest range. The study was focused on understanding the influence of mosses on soil physical properties and nutrient availability. Different physico-chemical properties were analysed under two different substrata, that is, with and without moss cover in two different seasons, viz., monsoon and winter. We observed mosses to influence and alter the physical properties and nutrient status of soil in both seasons. All soil physical and chemical properties, except magnesium, showed significant difference within the substrates, among all the sites and across the two seasons. Besides the soil characteristics underneath the moss vegetation, the study also highlights the diversity of mosses found in the area. Mosses appear to create high nutrient microsites via a high rate of organic matter accumulation and retain nutrients for longer periods thus, maintaining ecosystem stability.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2998
Author(s):  
Mohammed Nadeem Bijle ◽  
Manikandan Ekambaram ◽  
Edward Lo ◽  
Cynthia Yiu

The in vitro study objectives were to investigate the effect of arginine (Arg) incorporation in a 5% sodium fluoride (NaF) varnish on its physical and chemical properties including F/Arg release. Six experimental formulations were prepared with L-arginine (L-Arg) and L-arginine monohydrochloride at 2%, 4%, and 8% w/v in a 5% NaF varnish, which served as a control. The varnishes were subjected to assessments for adhesion, viscosity, and NaF extraction. Molecular dynamics were simulated to identify post-dynamics total energy for NaF=Arg/Arg>NaF/Arg<NaF concentrations. The Arg/F varnish release profiles were determined in polyacrylic lactate buffer (pH-4.5; 7 days) and artificial saliva (pH-7; 1 h, 24 h, and 12 weeks). Incorporation of L-Arg in NaF varnish significantly influences physical properties ameliorating retention (p < 0.001). L-Arg in NaF varnish institutes the Arg-F complex. Molecular dynamics suggests that NaF>Arg concentration denotes the stabilized environment compared to NaF<Arg (p < 0.001). The 2% Arg-NaF exhibits periodic perennial Arg/F release and shows significantly higher integrated mean F release than NaF (p < 0.001). Incorporating 2% L-arginine in 5% NaF varnish improves its physical properties and renders a stable matrix with enduring higher F/Arg release than control.


2021 ◽  
Vol 410 ◽  
pp. 469-474
Author(s):  
Ivan S. Safronov ◽  
Alexander I. Ushakov

One of the most important purposes of materials science is the ability to govern the physical properties of materials characterized by different structures. The strength properties of nanostructured metal alloys do not always meet the exploitation requirements. The set of properties of such materials is stable within narrow limits: temperature, mechanical, and corrosion conditions. Traditional processing modes are ineffective for such materials. Attempts to use them often lead to the loss of unique physical and chemical properties. The most effective methods of processing such materials are associated with the use of laser radiation. The laser pulse has a number of features, including a complex effect on the surface layers of the material. Spot and short irradiation with high-energy rays can preserve the unique physical properties of samples as a whole and improve strength indicators without destroying the structure of the material as a whole.


2021 ◽  
Vol 1019 ◽  
pp. 174-178
Author(s):  
Ramesh Kumar ◽  
Priti Kumari ◽  
Kumar Saurav ◽  
Purushottam Poddar ◽  
Vijay Kumar Verma

The relative metallic character of noble metals, Cu, Ag & Au has been suggested by their physical and chemical properties. Their position in the metallic series is in the neighborhood of that of Li, Mg and Zn. These Metals are inferior of Li, Mg, Zn, Fe, Co and Ni in metallic character. Li, Mg, Zn, Fe, Co and Ni are inferior to Na, K, Rb, Cs, Ca, Ba and Sr. The noble metals have simple metallic character in physical properties at normal temperatures.


Author(s):  
Marco Fontani ◽  
Mariagrazia Costa ◽  
Mary Virginia Orna

Within the period covered by Part II, 1789–1869, 37 true elements, almost all of them metals, were discovered. Prior to this time, about 14 metals had been discovered, excluding those that had been known from ancient times. The discovery of the elements during this period of interest is intimately related to the analytical methodologies available to chemists, as well as to a growing consciousness of just what an element is. Because these methods were also available to the less competent who may have lacked the skills to use them or the knowledge to interpret their results, their use also led to as many, if not more, erroneous discoveries in the same period. One can number among the major sources of error faulty interpretation of experimental data, the “rediscovery” of an already known element, sample impurities, very similar chemical properties (as in the case of the rare earths), the presence of an element in nature in very scarce or trace amounts, gross experimental errors, confusion of oxides and earths with their metals, and baseless dogmatic pronouncements by known “authorities” in the field. Antoine Laurent Lavoisier’s conceptualization of what constitutes an element was a radical break from the principles of alchemy. His stipulation that an element is a substance that cannot be further decomposed conferred an operational, pragmatic, concrete definition on what had previously been a more abstract concept. At the other end of the spectrum was the intuition of Dmitri Mendeleev who, contrary to the prevailing acceptance of Lavoisier’s concept, stressed the importance of retaining a more abstract, more fundamental sense of an element—an idea that in the long run enabled the development of the periodic table. What both men had in common is that they defined and named individual elements as those components of substances that could survive chemical change and whose presence in compounds could explain their physical and chemical properties. Mendeleev’s table has been immortalized in every chemistry classroom—and also concretely in Saint Petersburg, the city that saw most of his professional activity, by a spectacular building-sized model The analytical chemist depends on both of these concepts and indeed, analytical practice preceded Lavoisier’s concept by at least a century.


Fibers ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 44
Author(s):  
Sonny Widiarto ◽  
Edi Pramono ◽  
Suharso ◽  
Achmad Rochliadi ◽  
I Made Arcana

In this study, cellulose and cellulose nanofibers (CNF) were extracted and prepared from cassava peels (CPs). The method of the cellulose extraction was performed by alkali treatment followed by a bleaching process. The CNF were prepared by mechanical disruption procedure (homogenization and ultrasonication), and the results were compared with a common acid hydrolysis procedure. The resulting cellulose and CNF from both procedures were then analyzed using FTIR, SEM, TEM, XRD, and TGA. The results show that cellulose and CNF were successfully prepared from both procedures. The physical properties of the produced CNF were different; however, they had similar chemical properties.


Author(s):  
Waylson Zancanella Quartezani ◽  
Julião Soares de Souza Lima ◽  
Talita Aparecida Pletsch ◽  
Evandro Chaves de Oliveira ◽  
Sávio da Silva Berilli ◽  
...  

There is little knowledge available on the best techniques for transferring spatial information such as stochastic interpolation and multivariate analyses for black pepper. This study applies multiple linear and spatial regression to estimate black pepper productivity based on physical and chemical properties of the soil. A multiple linear regression including all properties of a Latosol was performed and followed by variance analysis to verify the validity of the model. The adjusted variograms and data interpolation by kriging allowed the use of spatial multiple regression with the properties that were significant in the multiple linear regression. The forward stepwise method was used and the model was validated by the F-test. The influence of the Latosol properties was greater than the residual on the prediction of productivity. The model was composed by the physical properties fine sand (FS), penetration resistance (PR), and Bulk density (BD), and by the chemical properties K, Ca, and Mg (except for Mg in the spatial regression). The physical properties were of greater relevance in determining productivity, and the maps estimated by ordinary kriging and predicted by the spatial multiple regression were very similar in shape.


2019 ◽  
Vol 2 (1) ◽  
pp. 37-46
Author(s):  
Rudi Hartono ◽  
Muhdi ◽  
John Parulian Nainggolan

This study aims to determine the physical and chemical properties of sugar palm. Physical properties include moisture content, density, and shrinkage from wet to dry oven chemical properties included of extractive solubility in cold and wet solutions. The samples were 15 years of age and originated from Sidikalang, Dairi district, North Sumatra. Three individual samples were taken and cut into 50 cm of length of three types of height namely base, middle, and end. The research was also conducted horizontally (edge, center, and at the core). The results of this study indicated that the average water content was 120.31-603.48%, the specific weight was 0.12-0.51 g/cm3, and the shrinkage from wet to dry oven was 28.06-77.69%. The extractive solubility in cold water was 11.66-87.22%, while in hot water was 10-90%. Based on the specific weight/density obtained, the outer part or edge of the palm sugar was included in the strength classes IV and V.


Sign in / Sign up

Export Citation Format

Share Document