scholarly journals The Physical Properties and The Extractive Content of Sugar Palm Stem (Arenga pinnata)

2019 ◽  
Vol 2 (1) ◽  
pp. 37-46
Author(s):  
Rudi Hartono ◽  
Muhdi ◽  
John Parulian Nainggolan

This study aims to determine the physical and chemical properties of sugar palm. Physical properties include moisture content, density, and shrinkage from wet to dry oven chemical properties included of extractive solubility in cold and wet solutions. The samples were 15 years of age and originated from Sidikalang, Dairi district, North Sumatra. Three individual samples were taken and cut into 50 cm of length of three types of height namely base, middle, and end. The research was also conducted horizontally (edge, center, and at the core). The results of this study indicated that the average water content was 120.31-603.48%, the specific weight was 0.12-0.51 g/cm3, and the shrinkage from wet to dry oven was 28.06-77.69%. The extractive solubility in cold water was 11.66-87.22%, while in hot water was 10-90%. Based on the specific weight/density obtained, the outer part or edge of the palm sugar was included in the strength classes IV and V.

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1476
Author(s):  
Ana Cristina Ferrão ◽  
Raquel P. F. Guiné ◽  
Elsa Ramalhosa ◽  
Arminda Lopes ◽  
Cláudia Rodrigues ◽  
...  

Hazelnuts are one of the most appreciated nuts worldwide due to their unique organoleptic and nutritional characteristics. The present work intended to analyse several physical and chemical properties of different hazelnut varieties grown in Portugal, namely Tonda de Giffoni, Grada de Viseu, Segorbe, Longa de Espanha, Butler, Gunslebert, and Negreta. In general, the results revealed statistically significant differences between the varieties under study. The Gunslebert had more elongated hazelnuts and with heavier shelled fruits, while the kernels of the Grada de Viseu revealed to be heavier. Grada de Viseu was harder in the shell, Gunslebert had a harder core, and Segorbe was more resistant to fracture. Fat was the more representative component for all varieties and in some cases the values of moisture and water activity were over the recommended amount (≥0.62). Tonda de Giffoni was the variety with the highest induction time, indicating the highest oxidation stability. Moreover, discriminant analysis revealed that the variables more important to distinguish the varieties were protein (λ = 0.007) and water activity (λ = 0.010). The results of this study help to better understand the differences between some hazelnut varieties that are cultivated in Portugal, which gives important hints for all players in the hazelnut sector.


2021 ◽  
pp. 1-10
Author(s):  
Anshu Siwach ◽  
Siddhartha Kaushal ◽  
Ratul Baishya

Abstract Mosses are one of the most important and dominant plant communities, especially in the temperate biome, and play a significant role in ecosystem function and dynamics. They influence the water, energy and element cycle due to their unique ecology and physiology. The present study was undertaken in three different temperate forest sites in the Garhwal Himalayas, viz., Triyuginarayan (Kedarnath Wildlife Sanctuary (KWLS)), Chakrata, and Kanasar forest range. The study was focused on understanding the influence of mosses on soil physical properties and nutrient availability. Different physico-chemical properties were analysed under two different substrata, that is, with and without moss cover in two different seasons, viz., monsoon and winter. We observed mosses to influence and alter the physical properties and nutrient status of soil in both seasons. All soil physical and chemical properties, except magnesium, showed significant difference within the substrates, among all the sites and across the two seasons. Besides the soil characteristics underneath the moss vegetation, the study also highlights the diversity of mosses found in the area. Mosses appear to create high nutrient microsites via a high rate of organic matter accumulation and retain nutrients for longer periods thus, maintaining ecosystem stability.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2998
Author(s):  
Mohammed Nadeem Bijle ◽  
Manikandan Ekambaram ◽  
Edward Lo ◽  
Cynthia Yiu

The in vitro study objectives were to investigate the effect of arginine (Arg) incorporation in a 5% sodium fluoride (NaF) varnish on its physical and chemical properties including F/Arg release. Six experimental formulations were prepared with L-arginine (L-Arg) and L-arginine monohydrochloride at 2%, 4%, and 8% w/v in a 5% NaF varnish, which served as a control. The varnishes were subjected to assessments for adhesion, viscosity, and NaF extraction. Molecular dynamics were simulated to identify post-dynamics total energy for NaF=Arg/Arg>NaF/Arg<NaF concentrations. The Arg/F varnish release profiles were determined in polyacrylic lactate buffer (pH-4.5; 7 days) and artificial saliva (pH-7; 1 h, 24 h, and 12 weeks). Incorporation of L-Arg in NaF varnish significantly influences physical properties ameliorating retention (p < 0.001). L-Arg in NaF varnish institutes the Arg-F complex. Molecular dynamics suggests that NaF>Arg concentration denotes the stabilized environment compared to NaF<Arg (p < 0.001). The 2% Arg-NaF exhibits periodic perennial Arg/F release and shows significantly higher integrated mean F release than NaF (p < 0.001). Incorporating 2% L-arginine in 5% NaF varnish improves its physical properties and renders a stable matrix with enduring higher F/Arg release than control.


2021 ◽  
Vol 410 ◽  
pp. 469-474
Author(s):  
Ivan S. Safronov ◽  
Alexander I. Ushakov

One of the most important purposes of materials science is the ability to govern the physical properties of materials characterized by different structures. The strength properties of nanostructured metal alloys do not always meet the exploitation requirements. The set of properties of such materials is stable within narrow limits: temperature, mechanical, and corrosion conditions. Traditional processing modes are ineffective for such materials. Attempts to use them often lead to the loss of unique physical and chemical properties. The most effective methods of processing such materials are associated with the use of laser radiation. The laser pulse has a number of features, including a complex effect on the surface layers of the material. Spot and short irradiation with high-energy rays can preserve the unique physical properties of samples as a whole and improve strength indicators without destroying the structure of the material as a whole.


2017 ◽  
Vol 6 (2) ◽  
pp. 82
Author(s):  
Sean X. Liu ◽  
Diejun Chen ◽  
George E. Inglett ◽  
Jingyuan Xu

Amaranth-oat composites were developed using gluten free amaranth flour containing essential amino acids and minerals with oat products containing β-glucan, known for lowering blood cholesterol. Amaranth flour and oat bran concentrate (OBC) composites (1:4) were processed using different technologies, including dry mixing, baking, steaming, cold wet blending, and high speed homogenizing (Polytron PT6000) with cold water or hot water. The results showed that water holding capacities, pasting, and rheological properties were dramatically increased by wet blending, Polytron with cold water, and Polytron with hot water followed by drum drying. The processing procedures created dissimilar physical properties that will enhance the application of ancient grains and oat for functional foods that are suitable for people who are gluten-intolerant. In addition, the dietary fiber contents of composites were increased by the incorporation of OBC. The composites can be inexpensively prepared and processed. The new healthful products will be affordable for people who suffer from celiac disease or gluten-intolerant. These innovative gluten-free functional food products will help millions of gluten sensitive consumers enjoy heart-healthy functional foods.


Author(s):  
Tjokorda Gde Tirta Nindhia ◽  
Zdenek Knejzlík ◽  
Tomáš Ruml ◽  
I Wayan Surata ◽  
Tjokorda Sari Nindhia

Silk can be produced by spider or insect and have prospect as biomaterial for regenerative healing in medical treatment. Silk having physical and chemical properties that support biocompatibility in the living things..In this research, silk that was obtained from Indonesia natural resource of Attacus atlas silkmoth was explored and then will be  developed for biocompatible biomaterial. The treatment with NaOH was developed to separate the fiber from the cocoon. The obtained fiber is investigated its mechanical property by performing tensile test for single fiber. The biocompatibility testing was conducted with human cell (osteosarccoma) cultivation. The result identify that separation by using NaOH yield better better mechanical properties comparing konvenstional method with boiling in hot water. Biocompatibility testing indicate that the the fiber having good biocompatibility.


2021 ◽  
Vol 1019 ◽  
pp. 174-178
Author(s):  
Ramesh Kumar ◽  
Priti Kumari ◽  
Kumar Saurav ◽  
Purushottam Poddar ◽  
Vijay Kumar Verma

The relative metallic character of noble metals, Cu, Ag & Au has been suggested by their physical and chemical properties. Their position in the metallic series is in the neighborhood of that of Li, Mg and Zn. These Metals are inferior of Li, Mg, Zn, Fe, Co and Ni in metallic character. Li, Mg, Zn, Fe, Co and Ni are inferior to Na, K, Rb, Cs, Ca, Ba and Sr. The noble metals have simple metallic character in physical properties at normal temperatures.


Author(s):  
Waylson Zancanella Quartezani ◽  
Julião Soares de Souza Lima ◽  
Talita Aparecida Pletsch ◽  
Evandro Chaves de Oliveira ◽  
Sávio da Silva Berilli ◽  
...  

There is little knowledge available on the best techniques for transferring spatial information such as stochastic interpolation and multivariate analyses for black pepper. This study applies multiple linear and spatial regression to estimate black pepper productivity based on physical and chemical properties of the soil. A multiple linear regression including all properties of a Latosol was performed and followed by variance analysis to verify the validity of the model. The adjusted variograms and data interpolation by kriging allowed the use of spatial multiple regression with the properties that were significant in the multiple linear regression. The forward stepwise method was used and the model was validated by the F-test. The influence of the Latosol properties was greater than the residual on the prediction of productivity. The model was composed by the physical properties fine sand (FS), penetration resistance (PR), and Bulk density (BD), and by the chemical properties K, Ca, and Mg (except for Mg in the spatial regression). The physical properties were of greater relevance in determining productivity, and the maps estimated by ordinary kriging and predicted by the spatial multiple regression were very similar in shape.


2012 ◽  
Vol 518-523 ◽  
pp. 5366-5370
Author(s):  
Jin Sun ◽  
Xiao Bo Wang ◽  
Yuan Zhu ◽  
Xiao Jing Wang ◽  
Zhen Zhong Gao

In order to provide necessary basis for utilization of Anthocephalus chinensis, its chemical composition was explored in this paper. The results as follow: Cold water extractive is 3.18%. Hot water extractive is 4.58%. 1% sodium hydroxide extractive is 18.78%. Alcohol-benzene extractive is 2.73%. Content of cellulose is 44.09%. Content of acid-insoluble lignin is 23.31%.Content of holocellulose is 74.72%. Content of hemicellulose is 30.67%. pH value of wood is 5.31. Through comparing with other species, the results suggested that A. chinensis is ideal material for wood-based panel, interior decoration and packaging.


2011 ◽  
Vol 94-96 ◽  
pp. 759-763
Author(s):  
Zhen Zhong Gao ◽  
Yuan Zhu ◽  
Xiao Jing Wang ◽  
Yan Lin ◽  
Xiao Bo Wang ◽  
...  

Toona ciliata, fast-growing timber species, located in the tropical and subtropical region. In order to explore how to make better use of Toona ciliate, its chemical composition was investigated in this paper. The results show that: Cold water extractive was 1.02%. Hot water extractive was 3.39%. 1% sodium hydroxide extractive was 15.45%. Ethanol-benzene extractive was 1.53%. Content of cellulose was 48.35%. Content of acid-insoluble lignin was 24.92%. Content of holocellulose was 76.45%. Content of hemicellulose was 28.1%. pH value of wood was 6.33. Through comparing with other species, high content of cellulose and low content of extractive suggested that Toona ciliate was ideal material for pulping and board making.


Sign in / Sign up

Export Citation Format

Share Document