General Introduction

Five papers on various problems of gravity waves in perfect liquids are being published together; the first three papers are entirely theoretical, but the last two include a description of various experiments made to check and extend the mathematical investigations contained in the third paper. Part I, by Penney & Price, considers the diffraction pattern produced by a semi-infinite straight breakwater inclined at any angle to the direction of approaching parallel harmonic infinitesimal sea waves. The spread of the waves into the lea of the breakwater is particularly interesting. The wave patterns behind gaps, and other extensions of the theory, are also developed.

1972 ◽  
Vol 53 (4) ◽  
pp. 637-645 ◽  
Author(s):  
C. Hunter

The calculation of the pattern of waves produced by a point disturbance in a steady field which may be non-uniform can be performed straightforwardly by a single process of integration along the characteristic rays. For illustration, the method is applied to gravity waves produced by a source moving either in a straight line or in a circular path, to the symmetrical waves produced by a source in an expanding sheet and to the waves resulting from an instantaneous disturbance in :I stratified fluid.


The diffraction of sea waves round the end of a long straight breakwater is investigated, use being made of the solutions of mathematically analogous problems in the diffraction of light. The wave patterns and wave heights are determined on both the leeward and windward sides of the breakwater, and for points quite close to the breakwater. This involves some extension of the calculations previously made for optical phenomena. The conditions obtaining in the lee of a small island are discussed. The penetration of waves through a single gap in a long breakwater is examined, and the result is shown to depend very much on whether the gap is small or not compared with the length of the waves. The investigation was suggested by problems arising in the construction of the Mulberry harbours.


Author(s):  
Joanes E Koagouw ◽  
Gybert E Mamuaya ◽  
Adrie A Tarumingkeng ◽  
P A Angmalisang

Coastal area of Bitung Municipality is one of the economical activities centers in North Sulawesi Province such as for land-uses and the exploitation of natural resources. Those activities are exaggerating day bay day and tended to be uncontrollable. The excess of those conditions, it has been recorded the change of waves in Bitung waters that has impacts to coastal areas and can affect the utilization of coastal and marine resources. This research was aimed to observe waves altitude variations in Bitung waters with Svedrup Munk and Bretchsneider (SMB) method that had been used to predict waves altitudes. The results showed that the wind speed during West Season was 0.33 m and were dominant to the East, while during East season was 0.91m from South-East to North-West, and then on transition period (March to May) was 1.08m from South-East to East. The results of those wind speed to the waves altitudes in Bitung waters is discussed in this paper© Pesisir pantai Kota Bitung merupakan salah satu pusat aktivitas ekonomi (misalnya pemanfaatan lahan dan eksploitasi sumberdaya) di Provinsi Sulawesi Utara. Aktivitas tersebut semakin hari semakin meningkat dan memiliki kecenderungan tidak terkontrol. Akibat dari keadaan tersebut, telah terjadi perubahan fenomena gelombang di perairan Bitung yang berdampak pada keberadaan daerah pesisir pantai di mana hal ini dapat mengganggu aktivitas pemanfaatan sumberdaya pesisir dan laut tersebut. Penelitian ini bertujuan untuk mengetahui variasi tinggi gelombang di perairan Bitung dengan menggunakan metode Svedrup Munk and Bretchsneider (SMB) yang biasa digunakan untuk peramalan tinggi gelombang signifikan. Hasil penelitian menunjukkan bahwa kecepatan angin pada Musim Barat sebesar 0,33 meter dan dominan ke arah Timur, sementara pada Musim Timur sebesar 0,91 meter dari arah Tenggara ke Barat Laut, serta pada Musim Peralihan (antara bulan Maret-Mei) adalah sebesar 1,08 meter dari arah Tenggara dan Timur. Pengaruh kecepatan angin tersebut terhadap gelombang laut di perairan Bitung dibahas dalam tulisan ini©


2019 ◽  
Vol 29 (6) ◽  
pp. 23-46

Michael Heinrich, one of the leading Marx scholars, provides a general introduction into Das Kapital with emphasis on the latest interpretations of it. The circumstances surrounding its writing and publication are shown to have interfered with an adequate appreciation of it. The formal structure and organization of the first volume are obstacles to readers and demand much from their education and intellect. The article summarizes the basic trajectories of Marx’s criticisms of political economy, including the critique of naturalizing social forms arising under capitalism and Marx’s original monetary theory of value. The author disentangles Marx’s Das Kapital from views mistakenly ascribed to it, such as the idea that value is determined solely by labor and the prediction of pauperization of the masses. First, Marx’s theory of value goes well beyond explaining prices under capitalism. Second, his main prophecy concerned the inevitable growth of inequality between the masters of capital and the employed classes and did not forecast impoverishment. The paper also points out that the sequence of publication of different volumes of Das Kapital caused lacunae in interpreting Marx’s oeuvre. For instance Engels’ efforts made the third volume more accessible to readers but also obscured the overall pattern of Marx’s thinking. the article shows that Das Kapital was a dynamic and fluctuating project to such an extent that Marx himself several times revisited his views of the causes of economic crises and falling profits and also intended to deal extensively with ecological issues. Reaching an adequate understanding of the theory contained in Das Kapital cannot depend on the manuscripts of those volumes alone. Marx’s notebooks, which have only recently published, are an indispensable aid to understanding it.


2019 ◽  
Vol 71 (1) ◽  
Author(s):  
Takeru Yamada ◽  
Takeshi Imamura ◽  
Tetsuya Fukuhara ◽  
Makoto Taguchi

AbstractThe reason for stationary gravity waves at Venus’ cloud top to appear mostly at low latitudes in the afternoon is not understood. Since a neutral layer exists in the lower part of the cloud layer, the waves should be affected by the neutral layer before reaching the cloud top. To what extent gravity waves can propagate vertically through the neutral layer has been unclear. To examine the possibility that the variation of the neutral layer thickness is responsible for the dependence of the gravity wave activity on the latitude and the local time, we investigated the sensitivity of the vertical propagation of gravity waves on the neutral layer thickness using a numerical model. The results showed that stationary gravity waves with zonal wavelengths longer than 1000 km can propagate to the cloud-top level without notable attenuation in the neutral layer with realistic thicknesses of 5–15 km. This suggests that the observed latitudinal and local time variation of the gravity wave activity should be attributed to processes below the cloud. An analytical approach also showed that gravity waves with horizontal wavelengths shorter than tens of kilometers would be strongly attenuated in the neutral layer; such waves should originate in the altitude region above the neutral layer.


2009 ◽  
Vol 27 (6) ◽  
pp. 2593-2598 ◽  
Author(s):  
J. V. Bageston ◽  
C. M. Wrasse ◽  
D. Gobbi ◽  
H. Takahashi ◽  
P. B. Souza

Abstract. An airglow all-sky imager was operated at Comandante Ferraz Antarctica Station (62.1° S, 58.4° W), between April and October of 2007. Mesospheric gravity waves were observed using the OH airglow layer during 43 nights with good weather conditions. The waves presented horizontal wavelengths between 10 and 60 km and observed periods mainly distributed between 5 and 20 min. The observed phase speeds range between 5 m/s and 115 m/s; the majority of the wave velocities were between 10 and 60 m/s. The waves showed a preferential propagation direction towards the southwest in winter (May to July), while during spring (August to October) there was an anisotropy with a preferential propagation direction towards the northwest. Unusual mesospheric fronts were also observed. The most probable wave source could be associated to orographic forcing, cold fronts or strong cyclonic activity in the Antarctica Peninsula.


2013 ◽  
Vol 79 (5) ◽  
pp. 629-633
Author(s):  
B. FAROKHI

AbstractThe linear dust lattice waves propagating in a two-dimensional honeycomb configuration is investigated. The interaction between particles is considered up to distance 2a, i.e. the third-neighbor interactions. Longitudinal and transverse (in-plane) dispersion relations are derived for waves in arbitrary directions. The study of dispersion relations with more neighbor interactions shows that in some cases the results change physically. Also, the dispersion relation in the different direction displays anisotropy of the group velocity in the lattice. The results are compared with dispersion relations of the waves in the hexagonal lattice.


1966 ◽  
Vol 1 (10) ◽  
pp. 1 ◽  
Author(s):  
L. Draper

During the International Geophysical Year the National Institute of Oceanography in collaboration with Ghana IGY Committee and the Ghana Railway and Harbours Administration made recordings of sea waves at a point 2,300 feet off Sekondi point in a direction 156°. The instrument used was an N.I.O. piezo-electric wave recorder of the pressure recording type. Recordings started in June, 1958, and continued until the end of October that year when the cable suffered severe damage which could not easily be repaired. Because of the high cost of cable and the fact that a good series of records had already been obtained for a rough time of year, the instrument was recovered and used elsewhere. Records were taken every two hours and each has a useable length of twelve minutes. Most of the waves arriving at Sekondi are in the form of swell which has been generated by storms in the southern hemisphere; consequently wave conditions do not change very quickly, and it was found unnecessary to analyse every record except during rough conditions. The method of analysis used is that described in the associated paper "The Analysis and Presentation of Wave Data - a Plea for Uniformity".


Author(s):  
В.И. Сивцева ◽  
П.П. Аммосов ◽  
Г.А. Гаврильева ◽  
И.И. Колтовской ◽  
А.М. Аммосова

Исследованы данные температуры области мезопаузы, полученные за период 2013-2018 гг. на станции Маймага (63.04N, 129.51E) и за период 2015-2018 гг. на станции Тикси (71.58 N, 128.77 E). В зимний период сезона наблюдений 2014-2015 характеристика активности внутренних гравитационных волн (ВГВ) gwимеет более низкие значения, чем в другие сезоны, а средненочная температура, наоборот, превышает аналогичные значения в другие сезоны. Для сопоставления рассматривались спутниковые данные температурных профилей полученные EOS MLS (Aura). После выделения и вычитания вклада гравитационной составляющей из температурных профилей EOS MLS для области над станцией Маймага заметно отличие в зимней стратопаузе сезона 2014-2015. В этот сезон в зимний период, с учетом вычета вклада флуктуаций температуры обусловленных ВГВ, наблюдается отсутствие резких потеплений в районе стратопаузы в отличие от остальных сезонов. Измерение параметров планетарных волн в течение периода 2015-2018 гг. совместных наблюдений на станциях Маймага и Тикси показали, что фазы наблюдаемых на обеих станциях волн совпадают, а амплитуды на станции Тикси несколько (12 К) превышают амплитуды на станции Маймага. The temperature data of the mesopause region obtained for the period 2013-2018 at the station Maimaga (63.04 N, 129.51 E) and for the period 2015-2018 at the station Tiksi (71.58 N, 128.77 E) was investigated. During the winter period of the 20142015 observation season, the characteristic of the internal gravity waves (IGW) activity sgw has lower values than in other seasons, and the average night temperature of the mesopause region, on the contrary, exceeds corresponding values in other seasons. For comparison, satellite data of temperature profiles obtained by EOS MLS (Aura) are given. After isolating and subtracting the contribution of the gravitaty waves from the EOS MLS temperature profiles for the region above the st. Maimaga, the difference in the winter stratopause of the 2014-2015 season is noticeable. In this season in winter there is a lack of sharp warming in the stratopause region, in contrast to other seasons, taking into account the deduction of the contribution of temperature fluctuations due to IGW. Measurement of the parameters of planetary waves during the period 2015-2018 of joint observations at Maimaga and Tiksi stations showed that the phases of the waves observed at both stations coincide, and the amplitudes at Tiksi station are several (1-2 K) higher than the amplitudes at Maimaga station.


2005 ◽  
Vol 62 (5) ◽  
pp. 1480-1496 ◽  
Author(s):  
Zachary A. Eitzen ◽  
David A. Randall

Abstract This study uses a numerical model to simulate deep convection both in the Tropics over the ocean and the midlatitudes over land. The vertical grid that was used extends into the stratosphere, allowing for the simultaneous examination of the convection and the vertically propagating gravity waves that it generates. A large number of trajectories are used to evaluate the behavior of tracers in the troposphere, and it is found that the tracers can be segregated into different types based upon their position in a diagram of normalized vertical velocity versus displacement. Conditional sampling is also used to identify updrafts in the troposphere and calculate their contribution to the kinetic energy budget of the troposphere. In addition, Fourier analysis is used to characterize the waves in the stratosphere; it was found that the waves simulated in this study have similarities to those observed and simulated by other researchers. Finally, this study examines the wave energy flux as a means to provide a link between the tropospheric behavior of the convection and the strength of the waves in the stratosphere.


Sign in / Sign up

Export Citation Format

Share Document