The relation between porosity, microstructure and strength, and the approach to advanced cement-based materials

A theory is formulated to connect the strength of cement paste with its porosity. The theory shows that bending strength is largely dictated by the length of the largest pores, as in the Griffith (1920) model, but there is also an influence of the volume of porosity, which affects toughness through changing elastic modulus and fracture energy. Verification of this theory was achieved by observing the large pores in cement, and then relating bending strength to the measured defect length, modulus and fracture energy. The argument was proved by developing processes to remove the large pores from cement pastes, thereby raising the bending strength to 70 MPa. Further removal of colloidal pores gave a bending strength of 150 MPa and compression strength up to 300 MPa with improved toughness. Re-introduction of controlled pores into these macro-defect-free (mdf) cements allowed Feret’s law (1897) to be explained.

2013 ◽  
Vol 539 ◽  
pp. 211-214 ◽  
Author(s):  
Li Wu Mo ◽  
Yang Deng ◽  
An Qun Lu ◽  
Min Deng

Blended expansive agents consisting of MgO and CaO were prepared by calcining the mixtures of dolomite and magnesite. The mineral phases and microstructures of expansive agent were examined by XRD and SEM. The expansion properties of cement pastes containing 5% and 6% of expansive agent as well as the microstructure of hydrated expansive agent in cement paste were investigated. Results indicated that the contents of MgO and CaO in the blended expansive agent could be adjusted by changing the mix proportion of dolomite and magnesite. All the cement pastes containing expansive agent produced rapid expansion. At the same addition dosage, irrespective of curing temperature, expansive agent containing higher content of MgO produced greater expansion in cement pastes, particularly at late age, which probably ascribes to the relatively slow hydration of MgO.


2012 ◽  
Vol 253-255 ◽  
pp. 474-477 ◽  
Author(s):  
Lang Wu ◽  
Bing Yan ◽  
Bin Lei

The hydrated products, unhydrated cement and water (capillary pores) in the cement paste are seen as matrix, inclusion, Equivalent medium respectively, We used the micromechanics theories and Power’s Volume model to develop a multi-phase micromechanics model capable of simulating the elastic properties of cement-based materials, and the evolution of elastic properties in the hydration process was calculated at different water-cement ratio. The final experimental results show that this model can be used to predict the elastic properties of cement-based materials.


2015 ◽  
Vol 749 ◽  
pp. 362-367 ◽  
Author(s):  
Jaroslav Pokorný ◽  
Milena Pavlíková ◽  
Eva Navrátilová ◽  
Pavla Rovnaníková ◽  
Zbyšek Pavlík ◽  
...  

The effect of a-SiO2 of various origin on the properties of cement paste with incorporated different silica containing materials is experimentally studied in the paper. For the applied a-SiO2 materials, basic physical and chemical properties are accessed, together with their chemical composition. Amount of amorphous phase of SiO2 in particular siliceous materials is determined using XRD analysis. Matrix density, bulk density, total open porosity, compressive and bending strength are measured for all developed pastes with incorporated a-SiO2 containing materials, together with initial and final setting time of fresh mixtures. The obtained data give evidence on a high and fast reaction activity of tested siliceous materials which results in a significant improvement of porosity and mechanical strength of a-SiO2 modified cement pastes.


2017 ◽  
Vol 726 ◽  
pp. 553-557
Author(s):  
Qing Bi ◽  
Wu Yao

By combining the three-point bending beam test with theoretical derivation, the elastic modulus, fracture toughness, surface energy and the maximum defect size permissible under certain working stress of ultra-high strength cement-based materials were obtained. The fracture properties were studied with the water to binder ratios (W/B) from 0.18 to 0.14. Test results showed that the ultra-high strength cement-based materials are quasi-brittle and the net bending strength of specimen decreased substantially when there was a notch. The elastic modulus of ultra-high strength cement-based materials can be up to 74.0 GPa, obviously higher than that of ordinary cement-based materials, showing greater elastic deformation resistance. Moreover, with decrease of W/B ratio, the compressive strength, fracture toughness, critical strain energy release rate as well as the maximum defect size permissible under certain working stress of ultra-high strength cement-based materials increased significantly, indicating that the anti-cracking ability increased with the decrease of W/B ratio.


2015 ◽  
Vol 1129 ◽  
pp. 538-545
Author(s):  
D. Han ◽  
W. Chen ◽  
S. Zhong

In this study,influences of latex and mixing procedure on flexural strength, compressive strength, elastic modulus and apparent fracture energy of hardened cement paste mixed with polycarboxylate (PC) as superplasticizer were analyzed. The results show that, the apparent density of fresh latex modified cement paste (LMCP) and the compressive strength of the hardened LMCP were reduced 1%-8% and 0-28% respectively compared with the control, while the flexural strength and apparent fracture energy were increased 11%-70% and 22%-157% respectively. In generally, the mixing procedure had gentle effect on the mechanical properties of harden LMCP with the same mp/mc, while the different mp/mc and latex types had greater impact. The amounts of polymer adsorbed changed by mixing procedure and had significantly effect on the properties fresh LMCP while very little on the harden LMCP.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1611
Author(s):  
Gintautas Skripkiūnas ◽  
Asta Kičaitė ◽  
Harald Justnes ◽  
Ina Pundienė

The effect of calcium nitrate (CN) dosages from 0 to 3% (of cement mass) on the properties of fresh cement paste rheology and hardening processes and on the strength of hardened concrete with two types of limestone-blended composite cements (CEM II A-LL 42.5 R and 42.5 N) at different initial (two-day) curing temperatures (−10 °C to +20 °C) is presented. The rheology results showed that a CN dosage up to 1.5% works as a plasticizing admixture, while higher amounts demonstrate the effect of increasing viscosity. At higher CN content, the viscosity growth in normal early strength (N type) cement pastes is much slower than in high early strength (R type) cement pastes. For both cement-type pastes, shortening the initial and final setting times is more effective when using 3% at +5 °C and 0 °C. At these temperatures, the use of 3% CN reduces the initial setting time for high early strength paste by 7.4 and 5.4 times and for normal early strength cement paste by 3.5 and 3.4 times when compared to a CN-free cement paste. The most efficient use of CN is achieved at −5 °C for compressive strength enlargement; a 1% CN dosage ensures the compressive strength of samples at a −5 °C initial curing temperature, with high early strength cement exceeding 3.5 MPa but being less than the required 3.5 MPa in samples with normal early strength cement.


2013 ◽  
Vol 539 ◽  
pp. 19-24 ◽  
Author(s):  
Yong Qi Wei ◽  
Wu Yao

The quantitative characterization of hydration of cement pastes has always been one of focuses of researchers’ attention. Rietveld phase analysis (RPA), a combination of quantitative X-ray diffraction (QXRD) and the Rietveld method, supplies a tool of an enormous potential for that. Although a few of related researches were conducted by RPA, the reported attention was not paid to the neat cement paste with a low w/c ratio. Therefore, this work aimed at the quantitative study on hydration of such a cement paste chiefly by this method, meanwhile, cooperated with the hyphenated technique of thermogravimetry with differential scanning calorimetry (TG-DSC), as a spot check. Results indicated that RPA was a reliable method in quantitatively characterizing hydration of cement pastes, and gave a clear decription of evolution of all main crystal phases in cement pastes; and that the evolution of monosulphate(Afm_12) was also able to be tracked quantitatively. This will help to understand better the hydration mechanism of cement pastes, as well as to investigate quantitatively effects of mineral and chemical admixtures on hydration of composite cementitious systems.


2021 ◽  
Vol 1036 ◽  
pp. 255-262
Author(s):  
Yan Liang Ji ◽  
Zhen Ping Sun ◽  
Min Pang

Based on the low-field NMR, this study inveitigated bleeding property of the fresh cement pastes mixed with various gypsum dosage, specific area of cement and water reducers. Results showed that the gypsum dosage between 3 % and 5 % will cause an decrease bleeding and a lower bleeding velocity, while a 1 % gypsum dosage will increase the bleeding as a function of time. The increase of the cement surface will lead to a less bleeding rate. This can be explained that the finer particle will contribute to the packing which will form a low permeability of the cement paste, as a result less bleeding water is observed. The PCEs-made sample has smaller hot zone area which indocated the PCEs has good bleeding stability when varing water cement ratio. Furthermore, bying comparing with the NPE, it was found the ACS type water reducer has higher bleeding sensitivity when high water cement ratios were used.


Sign in / Sign up

Export Citation Format

Share Document