What happened in 1953? The Big Flood in the Netherlands in retrospect

Author(s):  
Herman Gerritsen

During the weekend of Saturday 31 January to Sunday 1 February 1953, a storm tide raged across the northwest European shelf and flooded the low-lying coastal areas of the countries around the North Sea. The peak high waters occurred during the night and the storm surprised many people in their sleep. The resulting disaster in terms of loss of life and damage to infrastructure was enormous. In the Netherlands, 1836 people fell victim to the flood; in the UK and Belgium, the casualities were 307 and 22, respectively. The large number of fatalities in the Netherlands was related to the fact that much of the affected area is below sea-level. This paper focuses on the case of the Netherlands. It discusses the history of land reclamation, and the fact that living in low-lying areas protected by dykes, often below sea-level, is an accepted fact of life in the Netherlands. The historical approach to dyke maintenance is then outlined, and the state of the dykes in the early twentieth century and after the war is discussed. The characteristics of the storm and the flood are discussed, along with people's experiences of the first hours and days following the flood. The impact of this human stress has often been lasting—many survivors continue to live with daily memories of the flood. Attention is given to the large-scale rescue and relief efforts, the closure of the dykes during the following nine months and the concept of the Delta Plan, designed to prevent such a large-scale disaster ever happening again. Although the 1953 storm was indeed a low probability event leading to very high storm-induced water-levels, and occurred in combination with spring tide, several arguments are presented that explain why this flood turned into a disaster of such a large scale. Equally, the question is raised whether the disaster could have been prevented. The paper concludes by noting the importance of awareness and preparedness in order to prevent a future storm threat of this scale turning into a disaster of the scope of the Big Flood of 1953.

2018 ◽  
Vol 18 (12) ◽  
pp. 3311-3326 ◽  
Author(s):  
Nina Ridder ◽  
Hylke de Vries ◽  
Sybren Drijfhout

Abstract. Atmospheric river (AR) systems play a significant role in the simultaneous occurrence of high coastal water levels and heavy precipitation in the Netherlands. Based on observed precipitation values (E-OBS) and the output of a numerical storm surge model (WAQUA/DSCMv5) forced with ERA-Interim sea level pressure and wind fields, we find that the majority of compound events (CEs) between 1979 and 2015 have been accompanied by the presence of an AR over the Netherlands. In detail, we show that CEs have a 3 to 4 times higher chance of occurrence on days with an AR over the Netherlands compared to any random day (i.e. days without knowledge on presence of an AR). In contrast, the occurrence of a CE on a day without AR is 3 times less likely than on any random day. Additionally, by isolating and assessing the prevailing sea level pressure (SLP) and sea surface temperature (SST) conditions with and without AR involvement up to 7 days before the events, we show that the presence of ARs constitutes a specific type of forcing conditions that (i) resemble the SLP anomaly patterns during the positive phase of the North Atlantic Oscillation (NAO+) with a north–south pressure dipole over the North Atlantic and (ii) cause a cooling of the North Atlantic subpolar gyre and eastern boundary upwelling zone while warming the western boundary of the North Atlantic. These conditions are clearly distinguishable from those during compound events without the influence of an AR which occur under SLP conditions resembling the East Atlantic (EA) pattern with a west–east pressure dipole over northern Europe and are accompanied by a cooling of the West Atlantic. Thus, this study shows that ARs are a useful tool for the early identification of possible harmful meteorological conditions over the Netherlands and supports an effort for the establishment of an early warning system.


2019 ◽  
Vol 2 (1) ◽  
pp. 1-20
Author(s):  
S.E. Grenfell ◽  
F. Fortune ◽  
M.F. Mamphoka ◽  
N. Sanderson

We investigate coastal wetland ecosystem resilience to sea level rise by modelling sea level rise trajectories and the impact on vegetation communities for a coastal wetland in South Africa. The rate of sediment accretion was modelled relative to IPCC sea level rise estimates for multiple RCP scenarios. For each scenario, inundation by neap and spring tide and the 2, 4, and 8 year recurrence interval water level was modelled over a period of 200 years. When tidal variation is considered, the rate of sediment accretion exceeds rising sea levels associated with climate change, resulting in no major changes in terms of inundation. When sea level rise scenarios were modelled in conjunction with recurrence interval water levels, flooding of the coastal wetland was much greater than current levels at 1 in 4 and 1 in 8 year events. In the long term, increases in salinity may cause a reduction in Phragmites australis cover. Very small increases in depth and frequency of inundation are likely to cause an expansion of samphire species at the expense of Juncus spp. The study suggests that for this wetland, variability in flow may be a key factor in balancing wetland resilience.


MAUSAM ◽  
2021 ◽  
Vol 48 (4) ◽  
pp. 541-554
Author(s):  
ZENGHAO QIN

Based on both the historical tidal gauge and ground subsidence records for the seven stations in Shanghai region, a non-linear statistical model fitting the variation of the mean annual eustatic sea level (ESL) is established to reveal the characteristics of the ESL in the past century and to estimate the mean annual relative sea level (RSL) in the next five decades by the model extrapolation for Shanghai region. The estimated values of the sea level rises are assessed to be fairly reasonable. The impact of the estimated sea level rise in the coming decades on the storm surges and tides in Shanghai region is numerically computed by using the two-dimensional nonlinear storm surge and tide dynamic models. In addition, on the basis of numerical integration of the same dynamic model, the probable maximum water levels resulting from the RSL in the coming decades are also estimated by the probable optimal combination of the track, intensity, landfall site, incident angle of tropical cyclone and spring tide.  


2018 ◽  
Author(s):  
Nina Ridder ◽  
Hylke de Vries ◽  
Sybren Drijfhout

Abstract. Atmospheric river (AR) systems play a significant role in the simultaneous occurrence of high coastal water levels and heavy precipitation in the Netherlands. Based on observed precipitation values (E-OBS) and the output of a numerical storm surge model (WAQUA/DSCMv5) forced with ERA-Interim sea level pressure and wind fields, we find that the majority of compound events between 1979–2015 has been accompanied by the presence of an AR over the Netherlands. By isolating and assessing the prevailing sea level pressure (SLP) and sea surface temperature (SST) conditions up to seven days before the events with and without AR involvement, we show that the presence of ARs constitutes a specific type of forcing conditions that (i) resemble the SLP anomaly patterns during the positive phase of the North Atlantic Oscillation (NAO+) with a North-South pressure dipole over the North Atlantic and (ii) cause a warming of the western boundary of the North Atlantic. These conditions are clearly distinguishable from those conditions during compound events without the influence of local ARs which occur under SLP conditions resembling the East Atlantic (EA) pattern with a West-East pressure dipole over Northern Europe and are accompanied by a cooling of the West Atlantic. Thus, this study provides a useful tool for the early identification of possible harmful meteorological conditions over the Netherlands and supports effort for the establishment of an early warning system.


2021 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Claas Teichmann ◽  
Daniela Jacob

AbstractIn this work we use a regional atmosphere–ocean coupled model (RAOCM) and its stand-alone atmospheric component to gain insight into the impact of atmosphere–ocean coupling on the climate change signal over the Iberian Peninsula (IP). The IP climate is influenced by both the Atlantic Ocean and the Mediterranean sea. Complex interactions with the orography take place there and high-resolution models are required to realistically reproduce its current and future climate. We find that under the RCP8.5 scenario, the generalized 2-m air temperature (T2M) increase by the end of the twenty-first century (2070–2099) in the atmospheric-only simulation is tempered by the coupling. The impact of coupling is specially seen in summer, when the warming is stronger. Precipitation shows regionally-dependent changes in winter, whilst a drier climate is found in summer. The coupling generally reduces the magnitude of the changes. Differences in T2M and precipitation between the coupled and uncoupled simulations are caused by changes in the Atlantic large-scale circulation and in the Mediterranean Sea. Additionally, the differences in projected changes of T2M and precipitation with the RAOCM under the RCP8.5 and RCP4.5 scenarios are tackled. Results show that in winter and summer T2M increases less and precipitation changes are of a smaller magnitude with the RCP4.5. Whilst in summer changes present a similar regional distribution in both runs, in winter there are some differences in the NW of the IP due to differences in the North Atlantic circulation. The differences in the climate change signal from the RAOCM and the driving Global Coupled Model show that regionalization has an effect in terms of higher resolution over the land and ocean.


2008 ◽  
Vol 65 (2) ◽  
pp. 267-275 ◽  
Author(s):  
Tom L. Catchpole ◽  
Andrew S. Revill ◽  
James Innes ◽  
Sean Pascoe

Abstract Catchpole, T. L., Revill, A. S., Innes, J., and Pascoe, S. 2008. Evaluating the efficacy of technical measures: a case study of selection device legislation in the UK Crangon crangon (brown shrimp) fishery. – ICES Journal of Marine Science, 65: 267–275. Bycatch reduction devices are being introduced into a wide range of fisheries, with shrimp and prawn fisheries particularly targeted owing to the heavy discarding common in these fisheries. Although studies are often undertaken to estimate the impact of a technical measure on the fishery before implementation, rarely have the impacts been assessed ex post. Here, the efficacy of the UK legislation pertaining to the use of sievenets in the North Sea Crangon crangon fishery is assessed. Three impacts were evaluated: on fisher behaviour (social), on the level of bycatch (biological), and on vessel profitability (economic). An apparent high level of compliance by skippers was identified despite a low level of enforcement. The estimated reduction in fleet productivity following the introduction of the legislation was 14%, equalling the mean loss of Crangon landings when using sievenets calculated from catch comparison trawls. Sievenets did reduce the unnecessary capture of unwanted marine organisms, but were least effective at reducing 0-group plaice, which make up the largest component of the bycatch. Clearly the legislation has had an effect in the desired direction, but it does not address sufficiently the bycatch issue in the Crangon fishery.


2021 ◽  
Author(s):  
Michel Schreinemachers ◽  
Wiebe Strick

<p>Should a bridge always be functional and accessible? Should it always fulfil its purpose? This seemingly self- evident question is a key question in footbridge design that is oriented towards creating experiences.</p><p>Footbridges are able to successfully enriches our experience of a certain context or landscape, it cannot be functional all the time, under all environmental conditions, weather and seasons. A good example is the Zalige bridge designed as part of the Room for the River, a large-scale national program for inland flood- protection in the Netherlands. Build upon the floodplains within a newly created river-park by the city of Nijmegen, the Zalige bridge’s curved shape stands in direct relationship to the fluctuating water levels of the river. When water levels rise, the bridge partially submerges, becoming only accessible through steppingstones. At peak heights, the bridge disappears completely, becoming a metaphor for our relationship to the water.</p><p>“Building a bridge that fails to fulfil its sole purpose of containing the water; this can only be pulled off in the Netherlands.” – jury Dutch Design Awards about the Zalige bridge.</p><p>The loss of functionality is directly related to the creation of an experience. When the water levels rose in January 2018, the bridge became the prime location to experience the changing landscape. It shows that engineering a bridge is not solely focussed on the most efficient engineering, but for the purpose it fulfils as for society. For most pedestrian bridges where the perception of the user is on a different level as for a highway bridge, functionality provides more than just cost driven or efficiency driven parameters. It is more related to the added value for the community. When design not solemnly derives from the sheer taste and predilection of the designer but is based on the user’s experience, it generates a durable relation with a feeling of ownership of its users. The key is to create this experience in an elegant and natural way and not forced or dictated. It should be people's own unique discovery and should not be imposed.</p>


2021 ◽  
Author(s):  
Elin Andrée ◽  
Jian Su ◽  
Martin Drews ◽  
Morten Andreas Dahl Larsen ◽  
Asger Bendix Hansen ◽  
...  

&lt;p&gt;The potential impacts of extreme sea level events are becoming more apparent to the public and policy makers alike. As the magnitude of these events are expected to increase due to climate change, and increased coastal urbanization results in ever increasing stakes in the coastal zones, the need for risk assessments is growing too.&lt;/p&gt;&lt;p&gt;The physical conditions that generate extreme sea levels are highly dependent on site specific conditions, such as bathymetry, tidal regime, wind fetch and the shape of the coastline. For a low-lying country like Denmark, which consists of a peninsula and islands that partition off the semi-enclosed Baltic Sea from the North Sea, a better understanding of how the local sea level responds to wind forcing is urgently called for.&lt;/p&gt;&lt;p&gt;We here present a map for Denmark that shows the most efficient wind directions for generating extreme sea levels, for a total of 70 locations distributed all over the country&amp;#8217;s coastlines. The maps are produced by conducting simulations with a high resolution, 3D-ocean model, which is used for operational storm surge modelling at the Danish Meteorological Institute. We force the model with idealized wind fields that maintain a fixed wind speed and wind direction over the entire model domain. Simulations are conducted for one wind speed and one wind direction at a time, generating ensembles of a set of wind directions for a fixed wind speed, as well as a set of wind speeds for a fixed wind direction, respectively.&lt;/p&gt;&lt;p&gt;For each wind direction, we find that the maximum water level at a given location increases linearly with the wind speed, and the slope values show clear spatial patterns, for example distinguishing the Danish southern North Sea coast from the central or northern North Sea Coast. The slope values are highest along the southwestern North Sea coast, where the passage of North Atlantic low pressure systems over the shallow North Sea, as well as the large tidal range, result in a much larger range of variability than in the more sheltered Inner Danish Waters. However, in our simulations the large fetch of the Baltic Sea, in combination with the funneling effect of the Danish Straits, result in almost as high water levels as along the North Sea coast.&lt;/p&gt;&lt;p&gt;Although the wind forcing is completely synthetic with no spatial and temporal structure of a real storm, this idealized approach allows us to systematically investigate the sea level response at the boundaries of what is physically plausible. We evaluate the results from these simulations by comparison to peak water levels from a 58 year long, high resolution ocean hindcast, with promising agreement.&lt;/p&gt;


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Steve Lambert ◽  
Dean Wilkinson

Purpose The outbreak of the severe acute respiratory syndrome coronavirus 2 virus and subsequent COVID-19 illness has had a major impact on all levels of society internationally. The extent of the impact of COVID-19 on prison staff and prisoners in England and Wales is unknown. Testing for COVID-19 both asymptomatic and symptomatic, as well as for antibodies, to date, has been minimal. The purpose of this paper is to explore the widespread testing of COVID-19 in prisons poses philosophical and ethical questions around trust, efficacy and ethicacy. Design/methodology/approach This paper is both descriptive, providing an overview of the widespread testing of COVID-19 in prisoners in England and Wales, and conceptual in that it discusses and argues the issues associated with large-scale testing. This paper provides a discussion, using comparative studies, of the issues associated with large-scale testing of prisoners across the prison estate in England and Wales (120 prisons). The issues identified in this paper are contextualised through the lens of COVID-19, but they are equally transferrable to epidemiological studies of any pandemic. Given the prevalence of COVID-19 globally and the lack of information about its spread in prisons, at the time of writing this paper, there is a programme of asymptomatic testing of prisoners. However, there remains a paucity of data on the spread of COVID-19 in prisons because of the progress with the ongoing testing programme. Findings The authors argue that the widespread testing of prisoners requires careful consideration of the details regarding who is included in testing, how consent is gained and how tests are administered. This paper outlines and argues the importance of considering the complex nuance of power relationships within the prison system, among prisoner officers, medical staff and prisoners and the detrimental consequences. Practical implications The widespread testing of COVID-19 presents ethical and practical challenges. Careful planning is required when considering the ethics of who should be included in COVID-19 testing, how consent will be gained, who and how tests will be administered and very practical challenges around the recording and assigning of COVID-19 test kits inside the prison. The current system for the general population requires scanning of barcodes and registration using a mobile number; these facilities are not permitted inside a prison. Originality/value This paper looks at the issues associated with mass testing of prisoners for COVID-19. According to the authors’ knowledge, there has not been any research that looks at the issues of testing either in the UK or internationally. The literature available details countries’ responses to the pandemic rather and scientific papers on the development of vaccines. Therefore, this paper is an original review of some of the practicalities that need to be addressed to ensure that testing can be as successful as possible.


2017 ◽  
Author(s):  
Huiting Mao ◽  
Dolly Hall ◽  
Zhuyun Ye ◽  
Ying Zhou ◽  
Dirk Felton ◽  
...  

Abstract. The impact of large-scale circulation on urban gaseous elemental mercury (GEM) was investigated through analysis of 2008–2015 measurement data from an urban site in New York City (NYC), New York, USA. Distinct annual cycles were observed in 2009–2010 with mixing ratios in warm seasons (i.e. spring–summer) 10–20 ppqv (~ 10 %–25 %) higher than in cool seasons (i.e. fall–winter). This annual cycle was disrupted in 2011 by an anomalously strong influence of the North American trough in that warm season and was reproduced in 2014 with annual amplitude enhanced up to ~ 70 ppqv associated with a particularly strong Bermuda High. North American trough axis index (TAI) and intensity index (TII) were used to characterize the effect of the North American trough on NYC GEM especially in winter and summer. The intensity and position of the Bermuda High had a significant impact on GEM in warm seasons supported by a strong correlation (r reaching 0.96, p 


Sign in / Sign up

Export Citation Format

Share Document