scholarly journals Bacteria differently regulate mRNA abundance to specifically respond to various stresses

Author(s):  
Alexander Bartholomäus ◽  
Ivan Fedyunin ◽  
Peter Feist ◽  
Celine Sin ◽  
Gong Zhang ◽  
...  

Environmental stress is detrimental to cell viability and requires an adequate reprogramming of cellular activities to maximize cell survival. We present a global analysis of the response of Escherichia coli to acute heat and osmotic stress. We combine deep sequencing of total mRNA and ribosome-protected fragments to provide a genome-wide map of the stress response at transcriptional and translational levels. For each type of stress, we observe a unique subset of genes that shape the stress-specific response. Upon temperature upshift, mRNAs with reduced folding stability up- and downstream of the start codon, and thus with more accessible initiation regions, are translationally favoured. Conversely, osmotic upshift causes a global reduction of highly translated transcripts with high copy numbers, allowing reallocation of translation resources to not degraded and newly synthesized mRNAs.

2018 ◽  
Vol 8 (7) ◽  
pp. 2257-2264 ◽  
Author(s):  
Charles C. Traverse ◽  
Howard Ochman

2019 ◽  
Author(s):  
Zeineb Achour ◽  
Johann Joets ◽  
Martine Leguilloux ◽  
Hélène Sellier ◽  
Jean-Philippe Pichon ◽  
...  

ABSTRACTCharacterizing the molecular processes developed by plants to respond to environmental cues is a major task to better understand local adaptation. DNA methylation is a chromatin mark involved in the transcriptional silencing of transposable elements (TEs) and gene expression regulation. While the molecular bases of DNA methylation regulation are now well described, involvement of DNA methylation in plant response to environmental cues remains poorly characterized. Here, using the TE-rich maize genome and analyzing methylome response to prolonged cold at the chromosome and feature scales, we investigate how genomic architecture affects methylome response to stress in a cold-sensitive genotype. Interestingly, we show that cold stress induces a genome-wide methylation increase through the hypermethylation of TE sequences and centromeres. Our work highlights a cytosine context-specific response of TE methylation that depends on TE types, chromosomal location and proximity to genes. The patterns observed can be explained by the parallel transcriptional activation of multiple DNA methylation pathways that methylate TEs in the various chromatin locations where they reside. Our results open new insights into the possible role of genome-wide DNA methylation in phenotypic response to stress.


PLoS Genetics ◽  
2012 ◽  
Vol 8 (5) ◽  
Author(s):  
Olin K. Silander ◽  
Nela Nikolic ◽  
Alon Zaslaver ◽  
Anat Bren ◽  
Ilya Kikoin ◽  
...  

2005 ◽  
Vol 51 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Fredrik Karlsson ◽  
Ann-Christin Malmborg-Hager ◽  
Ann-Sofie Albrekt ◽  
Carl A.K Borrebaeck

To identify Escherichia coli genes potentially regulated by filamentous phage infection, we used oligonucleotide microarrays. Genome-wide comparison of phage M13-infected and uninfected E. coli, 2 and 20 min after infection, was performed. The analysis revealed altered transcription levels of 12 E. coli genes in response to phage infection, and the observed regulation of phage genes correlated with the known in vivo pattern of M13 mRNA species. Ten of the 12 host genes affected could be grouped into 3 different categories based on cellular function, suggesting a coordinated response. The significantly upregulated genes encode proteins involved in reactions of the energy-generating phosphotransferase system and transcription processing, which could be related to phage transcription. No genes belonging to any known E. coli stress response pathways were scored as upregulated. Furthermore, phage infection led to significant downregulation of transcripts of the bacterial genes gadA, gadB, hdeA, gadE, slp, and crl. These downregulated genes are normally part of the host stress response mechanisms that protect the bacterium during conditions of acid stress and stationary phase transition. The phage-infected cells demonstrated impaired function of the oxidative and the glutamate-dependent acid resistance systems. Thus, global transcriptional analysis and functional analysis revealed previously unknown host responses to filamentous phage infection.Key words: filamentous phage infection, global transcriptional analysis, AR, Escherichia coli.


2016 ◽  
Vol 15 (1) ◽  
Author(s):  
Martin Holm Rau ◽  
Patricia Calero ◽  
Rebecca M. Lennen ◽  
Katherine S. Long ◽  
Alex T. Nielsen

animal ◽  
2016 ◽  
Vol 10 (10) ◽  
pp. 1602-1608 ◽  
Author(s):  
H.Y. Ji ◽  
B. Yang ◽  
Z.Y. Zhang ◽  
J. Ouyang ◽  
M. Yang ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1827
Author(s):  
Rong Gao ◽  
Yanyan Luo ◽  
Fahong Yun ◽  
Xuetong Wu ◽  
Peng Wang ◽  
...  

The calmodulin-binding transcription activator (CAMTA), as one of the most distinctive families of transcription factors, plays an important role in plant growth and development and in the stress response. However, it is currently unknown whether CAMTA exists in cucumbers and what its function is. In this study, we first identified four CAMTA genes in the cucumber genome using a genome-wide search method. Subsequently, we analyzed their physical and chemical properties, gene structure, protein domains, and phylogenetic relationships. The results show that the structure of CsCAMTAs is similar to that of other plants, and a phylogenetic analysis divides them into three groups. The analysis of cis-acting elements shows that most CsCAMTAs contain a variety of hormones and stress-related elements. The RT-PCR analysis shows that CsCAMTAs have different expression levels in different tissues and can be induced by IAA, ABA, MeJA, NaCl, and PEG. Finally, we analyzed the expression pattern of CsCAMTAs’ alternative spliceosomes under salt and drought stress. The results show that the expression levels of the different spliceosomes are affected by the type of stress and the duration of stress. These data indicate that CsCAMTAs participate in growth and development and in the stress response in cucumbers, a finding which lays the foundation for future CsCAMTAs’ functional research.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Khadiza Khatun ◽  
Sourav Debnath ◽  
Arif Hasan Khan Robin ◽  
Antt Htet Wai ◽  
Ujjal Kumar Nath ◽  
...  

Abstract Background CONSTANS-like (CO-like, COL) are putative zinc-finger transcription factors known to play vital role in various plant biological processes such as control of flowering time, regulation of plant growth and development and responses to stresses. However, no systematic analysis of COL family gene regarding the plant development and stress response has been previously performed in any solanaceous crop. In the present study, a comprehensive genome-wide analysis of COL family genes in petunia has been conducted to figure out their roles in development of organs and stress response. Results A total of 33 COL genes, 15 PaCOL genes in P. axillaris and 18 PiCOL genes in P. inflata, were identified in petunia. Subsequently, a genome-wide systematic analysis was performed in 15 PaCOL genes. Considering the domain composition and sequence similarity the 15 PaCOL and 18 PiCOL genes were phylogenetically classified into three groups those are conserved among the flowering plants. Moreover, all of the 15 PaCOL proteins were localized in nucleus. Furthermore, differential expression patterns of PaCOL genes were observed at different developmental stages of petunia. Additionally, transcript expression of 15 PaCOL genes under various abiotic and phytohormone treatments showed their response against stresses. Moreover, several cis-elements related to stress, light-responsive, hormone signaling were also detected in different PaCOL genes. Conclusion The phylogenetic clustering, organ specific expression pattern and stress responsive expression profile of conserved petunia COL genes indicating their involvement in plant growth and development and stress response mechanism. This work provide a significant foundation for understanding the biological roles of petunia COL genes in plant growth, development and in stress response.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Yanlin Cao ◽  
Yenan Zhan ◽  
Sujun Qiu ◽  
Zhong Chen ◽  
Kaiqin Gong ◽  
...  

Abstract Background Hypertrophy of ligamentum flavum (HLF) is a common lumbar degeneration disease (LDD) with typical symptoms of low back pain and limb numbness owing to an abnormal pressure on spinal nerves. Previous studies revealed HLF might be caused by fibrosis, inflammatory, and other bio-pathways. However, a global analysis of HLF is needed severely. Methods A genome-wide DNA methylation and single-nucleotide polymorphism analysis were performed from five LDD patients with HLF and five LDD patients without HLF. Comprehensive integrated analysis was performed using bioinformatics analysis and the validated experiments including Sanger sequencing, methylation-specific PCR, qPCR and ROC analysis. Furthermore, the function of novel genes in ligamentum flavum cells (LFCs) was detected to explore the molecular mechanism in HLF through knock down experiment, overexpression experiment, CCK8 assay, apoptosis assay, and so on. Results We identified 69 SNP genes and 735 661 differentially methylated sites that were enriched in extracellular matrix, inflammatory, and cell proliferation. A comprehensive analysis demonstrated key genes in regulating the development of HLF including ACSM5. Furthermore, the hypermethylation of ACSM5 that was mediated by DNMT1 led to downregulation of ACSM5 expression, promoted the proliferation and fibrosis, and inhibited the apoptosis of LFCs. Conclusion This study revealed that DNMT1/ACSM5 signaling could enhance HLF properties in vitro as a potential therapeutic strategy for HLF.


Sign in / Sign up

Export Citation Format

Share Document