scholarly journals Fast electron transport dynamics and energy deposition in magnetized, imploded cylindrical plasma

Author(s):  
D. Kawahito ◽  
M. Bailly-Grandvaux ◽  
M. Dozières ◽  
C. McGuffey ◽  
P. Forestier-Colleoni ◽  
...  

Inertial confinement fusion approaches involve the creation of high-energy-density states through compression. High gain scenarios may be enabled by the beneficial heating from fast electrons produced with an intense laser and by energy containment with a high-strength magnetic field. Here, we report experimental measurements from a configuration integrating a magnetized, imploded cylindrical plasma and intense laser-driven electrons as well as multi-stage simulations that show fast electrons transport pathways at different times during the implosion and quantify their energy deposition contribution. The experiment consisted of a CH foam cylinder, inside an external coaxial magnetic field of 5 T, that was imploded using 36 OMEGA laser beams. Two-dimensional (2D) hydrodynamic modelling predicts the CH density reaches 9.0   g cm − 3 , the temperature reaches 920 eV and the external B-field is amplified at maximum compression to 580 T. At pre-determined times during the compression, the intense OMEGA EP laser irradiated one end of the cylinder to accelerate relativistic electrons into the dense imploded plasma providing additional heating. The relativistic electron beam generation was simulated using a 2D particle-in-cell (PIC) code. Finally, three-dimensional hybrid-PIC simulations calculated the electron propagation and energy deposition inside the target and revealed the roles the compressed and self-generated B-fields play in transport. During a time window before the maximum compression time, the self-generated B-field on the compression front confines the injected electrons inside the target, increasing the temperature through Joule heating. For a stronger B-field seed of 20 T, the electrons are predicted to be guided into the compressed target and provide additional collisional heating. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 2)’.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jieru Ren ◽  
Zhigang Deng ◽  
Wei Qi ◽  
Benzheng Chen ◽  
Bubo Ma ◽  
...  

Abstract Intense particle beams generated from the interaction of ultrahigh intensity lasers with sample foils provide options in radiography, high-yield neutron sources, high-energy-density-matter generation, and ion fast ignition. An accurate understanding of beam transportation behavior in dense matter is crucial for all these applications. Here we report the experimental evidence on one order of magnitude enhancement of intense laser-accelerated proton beam stopping in dense ionized matter, in comparison with the current-widely used models describing individual ion stopping in matter. Supported by particle-in-cell (PIC) simulations, we attribute the enhancement to the strong decelerating electric field approaching 1 GV/m that can be created by the beam-driven return current. This collective effect plays the dominant role in the stopping of laser-accelerated intense proton beams in dense ionized matter. This finding is essential for the optimum design of ion driven fast ignition and inertial confinement fusion.


Author(s):  
Andrew Randewich ◽  
Rob Lock ◽  
Warren Garbett ◽  
Dominic Bethencourt-Smith

Almost 30 years since the last UK nuclear test, it remains necessary regularly to underwrite the safety and effectiveness of the National Nuclear Deterrent. To do so has been possible to date because of the development of continually improving science and engineering tools running on ever more powerful high-performance computing platforms, underpinned by cutting-edge experimental facilities. While some of these facilities, such as the Orion laser, are based in the UK, others are accessed by international collaboration. This is most notably with the USA via capabilities such as the National Ignition Facility, but also with France where a joint hydrodynamics facility is nearing completion following establishment of a Treaty in 2010. Despite the remarkable capability of the science and engineering tools, there is an increasing requirement for experiments as materials age and systems inevitably evolve further from what was specifically trialled at underground nuclear tests (UGTs). The data from UGTs will remain the best possible representation of the extreme conditions generated in a nuclear explosion, but it is essential to supplement these data by realizing new capabilities that will bring us closer to achieving laboratory simulations of these conditions. For high-energy-density physics, the most promising technique for generating temperatures and densities of interest is inertial confinement fusion (ICF). Continued research in ICF by the UK will support the certification of the deterrent for decades to come; hence the UK works closely with the international community to develop ICF science. UK Ministry of Defence © Crown Owned Copyright 2020/AWE. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 1)'.


Author(s):  
A. Casner

Since the seminal paper of Nuckolls triggering the quest of inertial confinement fusion (ICF) with lasers, hydrodynamic instabilities have been recognized as one of the principal hurdles towards ignition. This remains true nowadays for both main approaches (indirect drive and direct drive), despite the advent of MJ scale lasers with tremendous technological capabilities. From a fundamental science perspective, these gigantic laser facilities enable also the possibility to create dense plasma flows evolving towards turbulence, being magnetized or not. We review the state of the art of nonlinear hydrodynamics and turbulent experiments, simulations and theory in ICF and high-energy-density plasmas and draw perspectives towards in-depth understanding and control of these fascinating phenomena. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 2)’.


2017 ◽  
Vol 35 (1) ◽  
pp. 120-125
Author(s):  
L. Liao ◽  
R. Zhao ◽  
Y. Bie ◽  
H. Zhang ◽  
C. Hu

AbstractThe Weibel instability of the collimated MeV fast electron beams in a nanotube array target is researched in this work. It is found that the filamentation of the fast electrons is significantly suppressed. When fast electrons propagate the nanotube array, a strong magnetic field is created near the surface of tubes to obstruct the transverse movement of the fast electrons and bend them into the inner vacuum spaces between the successive tubes. In consequence, the positive feedback loop between the magnetic field perturbation and the electrons density perturbation is broken and the Weibel instability is thus weakened. Furthermore, the calculated results by a hybrid particle-in-cell code have also proven this weakening effect on the Weibel instability. Because of the high-energy density delivered by the MeV electrons, these results indicate some significant applications in the high-energy physics, such as radiography, fast-electron beam focusing, and perhaps fast ignition.


2010 ◽  
Vol 28 (2) ◽  
pp. 293-298 ◽  
Author(s):  
Wei Yu ◽  
Lihua Cao ◽  
M.Y. Yu ◽  
A.L. Lei ◽  
Z.M. Sheng ◽  
...  

AbstractIt is shown that an intense laser pulse can be focused by a conical channel. This anomalous light focusing can be attributed to a hitherto ignored effect in nonlinear optics, namely that the boundary response depends on the light intensity: the inner cone surface is ionized and the laser pulse is in turn modified by the resulting boundary plasma. The interaction creates a new self-consistently evolving light-plasma boundary, which greatly reduces reflection and enhances forward propagation of the light pulse. The hollow cone can thus be used for attaining extremely high light intensities for applications in strong-field and high energy-density physics and other areas.


2021 ◽  
Author(s):  
Robert Sprenkle ◽  
Luciano Silvestri ◽  
M. S. Murillo ◽  
Scott Bergeson

Abstract New facilities such as the National Ignition Facility and the Linac Coherent Light Source have pushed the frontiers of high energy-density matter. These facilities offer unprecedented opportunities for exploring extreme states of matter, ranging from cryogenic solid-state systems to hot, dense plasmas, with applications to inertial-confinement fusion and astrophysics. However, significant gaps in our understanding of material properties in these rapidly evolving systems still persist. In particular, non-equilibrium transport properties of strongly-coupled Coulomb systems remain an open question. Here, we study ion-ion temperature relaxation in a binary mixture, exploiting a recently-developed dual-species ultracold neutral plasma. We compare measured relaxation rates with atomistic simulations and a range of popular theories. Our work validates the assumptions and capabilities of the simulations and invalidates theoretical models in this regime. This work illustrates an approach for precision determinations of detailed material properties in Coulomb mixtures across a wide range of conditions.


2006 ◽  
Vol 24 (4) ◽  
pp. 541-551 ◽  
Author(s):  
F. BECKER ◽  
A. HUG ◽  
P. FORCK ◽  
M. KULISH ◽  
P. NI ◽  
...  

An intense and focused heavy ion beam is a suitable tool to generate high energy density in matter. To compare results with simulations it is essential to know beam parameters as intensity, longitudinal, and transversal profile at the focal plane. Since the beam's energy deposition will melt and evaporate even tungsten, non-intercepting diagnostics are required. Therefore a capacitive pickup with high resolution in both time and space was designed, built and tested at the high temperature experimental area at GSI. Additionally a beam induced fluorescence monitor was investigated for the synchrotron's (SIS-18) energy-regime (60–750 AMeV) and successfully tested in a beam-transfer-line.


2019 ◽  
Vol 37 (03) ◽  
pp. 288-300 ◽  
Author(s):  
J. Badziak ◽  
J. Domański

AbstractThe multi-petawatt (PW) lasers currently being built in Europe as part of the Extreme Light Infrastructure (ELI) project will be capable of generating femtosecond light pulses of ultra-relativistic intensities (~1023–1024 W/cm2) that have been unattainable so far. Such laser pulses can be used for the production of high-energy ion beams with unique features that could be applied in various fields of scientific and technological research. In this paper, the prospect of producing ultra-intense (intensity ≥1020 W/cm2) ultra-short (pico- or femtosecond) high-energy ion beams using multi-PW lasers is outlined. The results of numerical studies on the acceleration of light (carbon) ions, medium-heavy (copper) ions and super-heavy (lead) ions driven by a femtosecond laser pulse of ultra-relativistic intensity, performed with the use of a multi-dimensional (2D3 V) particle-in-cell code, are presented, and the ion acceleration mechanisms and properties of the generated ion beams are discussed. It is shown that both in the case of light ions and in the case of medium-heavy and super-heavy ions, ultra-intense femtosecond multi-GeV ion beams with a beam intensity much higher (by a factor ~102) and ion pulse durations much shorter (by a factor ~104–105) than achievable presently in conventional radio frequency-driven accelerators can be produced at laser intensities of 1023 W/cm2 predicted for the ELI lasers. Such ion beams can open the door to new areas of research in high-energy density physics, nuclear physics and inertial confinement fusion.


1993 ◽  
Vol 5 (9) ◽  
pp. 3328-3336 ◽  
Author(s):  
C. J. Keane ◽  
B. A. Hammel ◽  
D. R. Kania ◽  
J. D. Kilkenny ◽  
R. W. Lee ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
K. Weichman ◽  
J. J. Santos ◽  
S. Fujioka ◽  
T. Toncian ◽  
A. V. Arefiev

Abstract We present the first 3D fully kinetic simulations of laser driven sheath-based ion acceleration with a kilotesla-level applied magnetic field. The application of a strong magnetic field significantly and beneficially alters sheath based ion acceleration and creates two distinct stages in the acceleration process associated with the time-evolving magnetization of the hot electron sheath. The first stage delivers dramatically enhanced acceleration, and the second reverses the typical outward-directed topology of the sheath electric field into a focusing configuration. The net result is a focusing, magnetic field-directed ion source of multiple species with strongly enhanced energy and number. The predicted improvements in ion source characteristics are desirable for applications and suggest a route to experimentally confirm magnetization-related effects in the high energy density regime. We additionally perform a comparison between 2D and 3D simulation geometry, on which basis we predict the feasibility of observing magnetic field effects under experimentally relevant conditions.


Sign in / Sign up

Export Citation Format

Share Document