The N-end rule of selective protein turnover and its implications [abstract only]

When a chimeric gene encoding a ubiquitin: β-galactosidase fusion protein is expressed in the yeast Saccharomyces cerevisiae , ubiquitin is efficiently cleaved off the nascent fusion protein, yielding a deubiquitinated β-galactosidase (βgal). With one exception, this cleavage takes place irrespective of the nature of the amino acid residue of βgal at the ubiquitin-βgal junction. This result, in effect, allows one to expose different residues at the N-termini of the otherwise identical βgal proteins produced in vivo . The βgal proteins thus designed exhibit a striking diversity of in vivo half-lives, from more than 10h to less than 3 min, depending on the nature of the amino acid exposed at the N-terminus of βgal. The N-terminal location of an amino acid is essential for its effect on βgal half-life. The set of individual amino acids can thus be ordered with respect to the half-lives that they confer on βgal when present at its N-terminus (the ‘N-end rule’). The known N-terminal residues in long-lived intracellular proteins from both prokaryotes and eukaryotes are exclusively of the stabilizing class as predicted by the N-end rule. In contrast, a majority of the N-terminal residues in compartmentalized (e.g. secreted) proteins are of the destabilizing class. The N-end rule may thus underlie both the diversity of protein half-lives in vivo and the selective destruction of otherwise normal but miscompartmentalized proteins. The N-end may also account for the function of the previously described post-translational addition of single amino acids to protein N-termini. Thus the recognition of an N-terminal residue in a protein may mediate both the metabolic stability of the protein and the potential for regulation of its stability.

1996 ◽  
Vol 132 (3) ◽  
pp. 325-334 ◽  
Author(s):  
J W Zhang ◽  
P B Lazarow

Peb1 is a peroxisome biogenesis mutant isolated in Saccharomyces cerevisiae that is selectively defective in the import of thiolase into peroxisomes but has a normal ability to package catalase, luciferase and acyl-CoA oxidase (Zhang, J. W., C. Luckey, and P. B. Lazarow. 1993. Mol. Biol. Cell. 4:1351-1359). Thiolase differs from these other peroxisomal proteins in that it is targeted by an NH2-terminal, 16-amino acid peroxisomal targeting sequence type 2 (PTS 2). This phenotype suggests that the PEB1 protein might function as a receptor for the PTS2. The PEB1 gene has been cloned by functional complementation. It encodes a 42,320-D, hydrophilic protein with no predicted transmembrane segment. It contains six WD repeats that comprise the entire protein except for the first 55 amino acids. Peb1p was tagged with hemagglutinin epitopes and determined to be exclusively within peroxisomes by digitonin permeabilization, immunofluorescence, protease protection and immuno-electron microscopy (Zhang, J. W., and P. B. Lazarow. 1995. J. Cell Biol. 129:65-80). Peb1p is identical to Pas7p (Marzioch, M., R. Erdmann, M. Veenhuis, and W.-H. Kunau. 1994. EMBO J. 13: 4908-4917). We have now tested whether Peb1p interacts with the PTS2 of thiolase. With the two-hybrid assay, we observed a strong interaction between Peb1p and thiolase that was abolished by deleting the first 16 amino acids of thiolase. An oligopeptide consisting of the first 16 amino acids of thiolase was sufficient for the affinity binding of Peb1p. Binding was reduced by the replacement of leucine with arginine at residue five, a change that is known to reduce thiolase targeting in vivo. Finally, a thiolase-Peb1p complex was isolated by immunoprecipitation. To investigate the topogenesis of Peb1p, its first 56-amino acid residues were fused in front of truncated thiolase lacking the NH2-terminal 16-amino acid PTS2. The fusion protein was expressed in a thiolase knockout strain. Equilibrium density centrifugation and immunofluorescence indicated that the fusion protein was located in peroxisomes. Deletion of residues 6-55 from native Peb1p resulted in a cytosolic location and the loss of function. Thus the NH2-terminal 56-amino acid residues of Peb1p are necessary and sufficient for peroxisomal targeting. Peb1p is found in peroxisomes whether thiolase is expressed or not. These results suggest that Peb1p (Pas7p) is an intraperoxisomal receptor for the type 2 peroxisomal targeting signal.


2001 ◽  
Vol 183 (13) ◽  
pp. 3949-3957 ◽  
Author(s):  
David Šmajs ◽  
George M. Weinstock

ABSTRACT The 5.2-kb ColJs plasmid of a colicinogenic strain ofShigella sonnei (colicin type 7) was isolated and sequenced. pColJs was partly homologous to pColE1 and to pesticin-encoding plasmid pPCP1, mainly in the rep,mob, and cer regions. A 1.2-kb unique region of pColJs showed significantly different G+C content (34%) compared to the rest of pColJs (53%). Within the unique region, seven open reading frames (ORFs) were identified. ORF94 was shown to code for colicin Js activity (cja), a 94-amino-acid polypeptide (molecular mass, 10.4 kDa); ORF129 (cji) was shown to code for the 129-amino-acid colicin Js immunity protein (molecular mass, 14.3 kDa); and ORF65 was shown to be involved in colicin Js release by producer bacteria (cjl) coding for a 65-amino-acid polypeptide (molecular mass, 7.5 kDa). In contrast to the gene order in other colicin operons, the cjl gene was found upstream from cja. Moreover, the promoter upstream from cjl was similar to promoters described upstream from several colicin activity genes. The cji gene was found to be located downstream from cja with a transcription polarity opposite to that of the cjl andcja genes. The cja, cji, and cjl genes were not similar to other known colicin genes. Colicin Js was purified as an inactive fusion protein with an N-terminal histidine tag. Activity of the purified fusion form of colicin Js was restored after cleavage of the amino acids fused to the colicin Js N terminus.


2020 ◽  
Vol 9 (1) ◽  
pp. 7
Author(s):  
Stephanie J. Ruiz ◽  
Joury S. van ’t Klooster ◽  
Frans Bianchi ◽  
Bert Poolman

Amino acids are essential metabolites but can also be toxic when present at high levels intracellularly. Substrate-induced downregulation of amino acid transporters in Saccharomyces cerevisiae is thought to be a mechanism to avoid this toxicity. It has been shown that unregulated uptake by the general amino acid permease Gap1 causes cells to become sensitive to amino acids. Here, we show that overexpression of eight other amino acid transporters (Agp1, Bap2, Can1, Dip5, Gnp1, Lyp1, Put4, or Tat2) also induces a growth defect when specific single amino acids are present at concentrations of 0.5–5 mM. We can now state that all proteinogenic amino acids, as well as the important metabolite ornithine, are growth inhibitory to S. cerevisiae when transported into the cell at high enough levels. Measurements of initial transport rates and cytosolic pH show that toxicity is due to amino acid accumulation and not to the influx of co-transported protons. The amino acid sensitivity phenotype is a useful tool that reports on the in vivo activity of transporters and has allowed us to identify new transporter-specific substrates.


1996 ◽  
Vol 16 (2) ◽  
pp. 475-480 ◽  
Author(s):  
X Mao ◽  
B Schwer ◽  
S Shuman

RNA (guanine-7-)-methyltransferase is the enzyme responsible for methylating the 5' cap structure of eukaryotic mRNA. The Saccharomyces cerevisiae enzyme is a 436-amino-acid protein encoded by the essential ABD1 gene. In this study, deletion and point mutations in ABD1 were tested for the ability to support growth of an abd1 null strain. Elimination of 109 amino acids from the N terminus had no effect on cell viability, whereas a more extensive N-terminal deletion of 155 residues was lethal, as was a C-terminal deletion of 55 amino acids. Alanine substitution mutations were introduced at eight conserved residues within a 206-amino-acid region of similarity between ABD1 and the methyltransferase domain of the vaccinia virus capping enzyme. ABD1 alleles H253A (encoding a substitution of alanine for histidine at position 253), T282A, E287A, E361A, and Y362A were viable, whereas G174A, D178A, and Y254A were either lethal or severely defective for growth. Alanine-substituted and amino-truncated ABD1 proteins were expressed in bacteria, purified, and tested for cap methyltransferase activity in vitro. Mutations that were viable in yeast cells had either no effect or only a moderate effect on the specific methyltransferase activity of the mutated ABD1 protein, whereas mutations that were deleterious in vivo yielded proteins that were catalytically defective in vitro. These findings substantiate for the first time the long-held presumption that cap methylation is an essential function in eukaryotic cells.


1985 ◽  
Vol 40 (5-6) ◽  
pp. 427-437 ◽  
Author(s):  
Klaus-Joachim Schott ◽  
Jochen Gehrmann ◽  
Ulla Potter ◽  
Volker Neuhoff

Abstract 1. The effect of ʟ-norleucine, an isomer of leucine, on protein metabolism in vivo was studied in suckling rats. Rats were injected subcutaneously with various doses of ʟ-norleucine (0.5 and 5.0 μmol/g body wt.) every 12 h from 3 to 15 days post partum. Protein concentration, amino acid concentrations, and incorporation of [3H]tyrosine into protein were analyzed in liver, muscles of thigh and small intestine. Amino acid concentrations and insulin levels in serum were also measured. 2. At 5 days of age, norleucine induced an increase in protein concentration of skeletal muscle with an increased incorporation of [3H]tyrosine into protein indicating an accelerated protein synthesis. Changes in protein metabolism were paralleled by alterations in the amino acid pattern of this tissue. 3. When protein concentration and protein synthesis were increased in skeletal muscle, protein concentration of small intestine was decreased, accompanied by elevated levels of amino acids in tissue. Protein synthesis of small intestine was not altered by the norleucine treatment. The results suggest a close interrelationship between skeletal muscle and small intestine with respect to protein turnover. 4. The effects of norleucine were less pronounced at 10 and 15 days of age, which indicates a metabolic adaptation to the treatment. 5. Alterations in amino acid concentrations of tissue due to changes in protein metabolism were not uniform but tissue-specific. 6. Current concepts for explaining the effects of branched-chain amino acids (BCAA) on protein turnover in skeletal muscle are based on the assumption that the BCAA or leucine alone might become rate-limiting for protein synthesis in muscle under catabolic conditions. The amino acid analogue norleucine, however, cannot replace any of the BCAA in protein. Additionally, norleucine affected protein metabolism in highly anabolic organisms. Therefore, the present thoughts on this issue appear to be incomplete.


2020 ◽  
Author(s):  
Seungwoo Cha ◽  
Chang Pyo Hong ◽  
Hyun Ah Kang ◽  
Ji-Sook Hahn

Abstract Gcr1, an important transcription factor for glycolytic genes in Saccharomyces cerevisiae, was recently revealed to have two isoforms, Gcr1U and Gcr1S, produced from un-spliced and spliced transcripts, respectively. In this study, by generating strains expressing only Gcr1U or Gcr1S using the CRISPR/Cas9 system, we elucidate differential activation mechanisms of these two isoforms. The Gcr1U monomer forms an active complex with its coactivator Gcr2 homodimer, whereas Gcr1S acts as a homodimer without Gcr2. The USS domain, 55 residues at the N-terminus existing only in Gcr1U, inhibits dimerization of Gcr1U and even acts in trans to inhibit Gcr1S dimerization. The Gcr1S monomer inhibits the metabolic switch from fermentation to respiration by directly binding to the ALD4 promoter, which can be restored by overexpression of the ALD4 gene, encoding a mitochondrial aldehyde dehydrogenase required for ethanol utilization. Gcr1U and Gcr1S regulate almost the same target genes, but show unique activities depending on growth phase, suggesting that these isoforms play differential roles through separate activation mechanisms depending on environmental conditions.


1989 ◽  
Vol 44 (9-10) ◽  
pp. 838-844 ◽  
Author(s):  
H. Mach ◽  
M. Hecker ◽  
I. Hill ◽  
A. Schroeter ◽  
F. Mach

The viability of three isogenic relA+/relA strain pairs of Escherichia coli (CP78/CP79; NF 161/ NF162; CP 107/CP 143) was studied during prolonged starvation for amino acids, glucose or phosphate. After amino acid limitation we found a prolonged viability of all relA+ strains which synthesized ppGpp. We suggest that some ppGpp-mediated pleiotropic effects of the stringent response (e.g. glykogen accumulation, enhanced protein turnover) might be involved in this prolongation of survival. After glucose or phosphate starvation there was no difference in the relA+/relA strains either in the ppGpp content or in the survival.


Author(s):  
C.J. Seal ◽  
D.S. Parker ◽  
J.C. MacRae ◽  
G.E. Lobley

Amino acid requirements for energy metabolism and protein turnover within the gastrointestinal tract are substantial and may be met from luminal and arterial pools of amino acids. Several studies have demonstrated that the quantity of amino acids appearing in the portal blood does not balance apparent disappearance from the intestinal lumen and that changing diet or the availability of energy-yielding substrates to the gut tissues may influence the uptake of amino acids into the portal blood (Seal & Reynolds, 1993). For example, increased net absorption of amino acids was observed in animals receiving exogenous intraruminal propionate (Seal & Parker, 1991) and this was accompanied by changes in glucose utilisation by the gut tissues. In contrast, there was no apparent change in net uptake of [l-13C]-leucine into the portal vein of sheep receiving short term intraduodenal infusions of glucose (Piccioli Cappelli et al, 1993). This experiment was designed to further investigate the effects on amino acid absorption of changing glucose availability to the gut with short term (seven hours) or prolonged (three days) exposure to starch infused directly into the duodenum.


1987 ◽  
Vol 7 (1) ◽  
pp. 294-304 ◽  
Author(s):  
D Pilgrim ◽  
E T Young

Alcohol dehydrogenase isoenzyme III (ADH III) in Saccharomyces cerevisiae, the product of the ADH3 gene, is located in the mitochondrial matrix. The ADH III protein was synthesized as a larger precursor in vitro when the gene was transcribed with the SP6 promoter and translated with a reticulocyte lysate. A precursor of the same size was detected when radioactively pulse-labeled proteins were immunoprecipitated with anti-ADH antibody. This precursor was rapidly processed to the mature form in vivo with a half-time of less than 3 min. The processing was blocked if the mitochondria were uncoupled with carbonyl cyanide m-chlorophenylhydrazone. Mutant enzymes in which only the amino-terminal 14 or 16 amino acids of the presequence were retained were correctly targeted and imported into the matrix. A mutant enzyme that was missing the amino-terminal 17 amino acids of the presequence produced an active enzyme, but the majority of the enzyme activity remained in the cytoplasmic compartment on cellular fractionation. Random amino acid changes were produced in the wild-type presequence by bisulfite mutagenesis of the ADH3 gene. The resulting ADH III protein was targeted to the mitochondria and imported into the matrix in all of the mutants tested, as judged by enzyme activity. Mutants containing amino acid changes in the carboxyl-proximal half of the ADH3 presequence were imported and processed to the mature form at a slower rate than the wild type, as judged by pulse-chase studies in vivo. The unprocessed precursor appeared to be unstable in vivo. It was concluded that only a small portion of the presequence contains the necessary information for correct targeting and import. Furthermore, the information for correct proteolytic processing of the presequence appears to be distinct from the targeting information and may involve secondary structure information in the presequence.


Sign in / Sign up

Export Citation Format

Share Document