Spatial and temporal aspects of cell signalling

As new techniques are developed to measure intracellular messengers it becomes increasingly apparent that there is a remarkable spatial and temporal organization of cell signalling. Cells possess a small discrete hormone-sensitive pool of inositol lipid. In some cells such as Xenopus oocytes and Limulus photoreceptors this phosphoinositide signalling system is highly concentrated in one region of the cell, so establishing localized calcium gradients. Another example is the hydrolysis of inositol lipids in eggs at the point of sperm entry resulting in a localized increase in Ins(1,4,5) P 3 and calcium which spreads like a wave throughout the egg. In hamster eggs this burst of calcium at fertilization recurs at 1-3 min intervals for over 100 min, a particularly dramatic example of spontaneous activity. Spontaneous oscillations in intracellular calcium exist in many different cell types and are often induced by agonists that hydrolyse inositol lipids. We have made a distinction between oscillations that are approximately sinusoidal and occur at a higher frequency where free calcium is probably continuously involved in the oscillatory cycle and those where calcium falls to resting levels for many seconds between transients. In the former case, the oscillations are thought to be induced through a cytoplasmic oscillator based on the phenomenon of calcium-induced calcium release. Such oscillations can be induced in Xenopus oocytes after injection with Ins(1,4,5) P 3 . A receptor-controlled oscillator based on the periodic formation of I ns (1,4,5) P 3 is probably responsible for the generation of the widely spaced calcium transients. The function of such calcium oscillations is currently unknown. They may be a reflection of the feedback interactions that operate to control intracellular calcium. Another possibility emerged from observations that in some cells the frequency of calcium oscillations varied with agonist concentration, suggesting that cells might employ these oscillations as a way of encoding information. One advantage of using such a frequency-dependent mechanism may lie in an increase in fidelity, especially at low agonist concentrations. Whatever these functions might be, it is clear that uncovering the mechanisms responsible for such oscillatory activity will greatly enhance our understanding of the relation between the phosphoinositides and calcium signalling.

1997 ◽  
Vol 110 (15) ◽  
pp. 1683-1692 ◽  
Author(s):  
P. Rosay ◽  
S.A. Davies ◽  
Y. Yu ◽  
A. Sozen ◽  
K. Kaiser ◽  
...  

Calcium is a ubiquitous second messenger that plays a critical role in both excitable and non-excitable cells. Calcium mobilisation in identified cell types within an intact renal epithelium, the Drosophila melanogaster Malpighian tubule, was studied by GAL4-directed expression of an aequorin transgene. CAP2b, a cardioactive neuropeptide that stimulates fluid secretion by a mechanism involving nitric oxide, causes a rapid, dose-dependent rise in cytosolic calcium in only a single, genetically-defined, set of 77 principal cells in the main (secretory) segment of the tubule. In the absence of external calcium, the CAP2b-induced calcium response is abolished. In Ca2+-free medium, the endoplasmic reticulum Ca2+-ATPase inhibitor, thapsigargin, elevates [Ca2+]i only in the smaller stellate cells, suggesting that principal cells do not contain a thapsigargin-sensitive intracellular pool. Assays for epithelial function confirm that calcium entry is essential for CAP2b to induce a physiological response in the whole organ. Furthermore, the data suggest a role for calcium signalling in the modulation of the nitric oxide signalling pathway in this epithelium. The GAL4-targeting system allows general application to studies of cell-signalling and pharmacology that does not rely on invasive or cytotoxic techniques.


1996 ◽  
Vol 76 (4) ◽  
pp. 1027-1071 ◽  
Author(s):  
J. L. Sutko ◽  
J. A. Airey

Complexities in calcium signaling in eukaryotic cells require diversity in the proteins involved in generating these signals. In this review, we consider the ryanodine receptor (RyR) family of intracellular calcium release channels. This includes species, tissue, and cellular distributions of the RyRs and mechanisms of activation, deactivation, and inactivation of RyR calcium release events. In addition, as first observed in nonmammalian vertebrate skeletal muscles, it is now clear that more than one RyR isoform is frequently coexpressed within many cell types. How multiple ryanodine receptor release channels are used to generate intracellular calcium transients is unknown. Therefore, a primary focus of this review is why more than one RyR is required for this purpose, particularly in a tissue, such as vertebrate fast-twitch skeletal muscles, where a relatively simple and straightforward change in calcium would appear to be required to elicit contraction. Finally, the roles of the RyR isoforms and the calcium release events they mediate in the development of embryonic skeletal muscle are considered.


1989 ◽  
Vol 257 (2) ◽  
pp. H665-H673 ◽  
Author(s):  
M. D. Stern ◽  
H. F. Weisman ◽  
D. G. Renlund ◽  
G. Gerstenblith ◽  
O. Hano ◽  
...  

We measured intensity fluctuations of 633 nm laser light backscattered from the epicardial surface of isolated, perfused rat and rabbit hearts. Scattered light intensity fluctuations (SLIF) were detected from verapamil-arrested rat hearts. The frequency of SLIF was increased by maneuvers that raise intracellular calcium. SLIF were abolished by removal of extracellular calcium with ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid and by blockade of sarcoplasmic reticulum calcium release by ryanodine. SLIF were not accompanied by any surface electro-cardiogram and were not abolished by 144 mM extracellular potassium. SLIF were absent in rabbit hearts under base-line conditions but could be provoked by calcium loading using zero potassium and ouabain. We conclude that backscatter SLIF monitor the microscopic motion caused by intracellular calcium oscillations in the intact heart. We measured SLIF from rat hearts during 60 min of global ischemia at 30 degrees C, followed by reflow. Ischemia reduced SLIF frequency to zero within 30 min. Reflow caused an overshoot of SLIF frequency to as much as five times control, suggesting that reflow causes major calcium overload of cells that are at least transiently viable.


2008 ◽  
Vol 294 (4) ◽  
pp. C917-C930 ◽  
Author(s):  
J. M. A. M. Kusters ◽  
W. P. M. van Meerwijk ◽  
D. L. Ypey ◽  
A. P. R. Theuvenet ◽  
C. C. A. M. Gielen

We have investigated synchronization and propagation of calcium oscillations, mediated by gap junctional excitation transmission. For that purpose we used an experimentally based model of normal rat kidney (NRK) cells, electrically coupled in a one-dimensional configuration (linear strand). Fibroblasts such as NRK cells can form an excitable syncytium and generate spontaneous inositol 1,4,5-trisphosphate (IP3)-mediated intracellular calcium waves, which may spread over a monolayer culture in a coordinated fashion. An intracellular calcium oscillation in a pacemaker cell causes a membrane depolarization from within that cell via calcium-activated chloride channels, leading to an L-type calcium channel-based action potential (AP) in that cell. This AP is then transmitted to the electrically connected neighbor cell, and the calcium inflow during that transmitted AP triggers a calcium wave in that neighbor cell by opening of IP3 receptor channels, causing calcium-induced calcium release (CICR). In this way the calcium wave of the pacemaker cell is rapidly propagated by the electrically transmitted AP. Propagation of APs in a strand of cells depends on the number of terminal pacemaker cells, the L-type calcium conductance of the cells, and the electrical coupling between the cells. Our results show that the coupling between IP3-mediated calcium oscillations and AP firing provides a robust mechanism for fast propagation of activity across a network of cells, which is representative for many other cell types such as gastrointestinal cells, urethral cells, and pacemaker cells in the heart.


Zygote ◽  
1999 ◽  
Vol 7 (3) ◽  
pp. 255-260 ◽  
Author(s):  
Martin Wilding ◽  
Marcella Marino ◽  
Daniela Dale

Fertilisation in ascidian oocytes triggers a plasma membrane current, the release of intracellular calcium and the degradation of Maturation Promoting Factor (MPF) activity leading to the completion of meiosis and the initiation of embryo development. We have previously shown that the fertilisation current in ascidians is produced through the metabolism of nicotinamide nucleotide (NN) metabolites to ADP ribose. In this study we have used nicotinamide to test whether NN metabolism plays additional roles in fertilisation in ascidians. Nicotinamide treatment blocked calcium-induced calcium release (CICR) and arrested the cell cycle prior to the completion of meiosis I. Nicotinamide further prevented the abolition of MPF activity after fertilisation. Interestingly, nicotinamide treatment caused ascidian oocytes to form interphase-like pronuclei after fertilisation, despite the high MPF activity. The data demonstrate that NN metabolism is involved in calcium signalling through CICR and further suggest that a NN metabolite acts as a messenger connecting MPF activity to the formation of the meiotic apparatus.


1988 ◽  
Vol 234 (1277) ◽  
pp. 359-378 ◽  

The response of cells to many external stimuli requires a decoding process at the membrane to transduce information into intracellular messengers. A major decoding mechanism employed by a variety of hormones, neuro­transmitters and growth factors depends on the hydrolysis of a unique inositol lipid to generate two key second messengers, diacylglycerol and inositol 1, 4, 5-trisphosphate (Ins(1, 4, 5) P 3 ). Here I examine the second messenger function of Ins(l, 4, 5) P 3 in controlling the mobilization of cal­cium. We know most about how this messenger releases calcium from internal reservoirs but less is known concerning the entry of external calcium. One interesting possibility is that Ins(1, 4, 5) P 3 might function in conjunction with its metabolic product Ins(1, 3, 4, 5) P 4 to control calcium entry through a mechanism employing a region of the endoplasmic re­ticulum as a halfway house during the transfer of calcium from outside the cell into the cytoplasm. The endoplasmic reticulum interposed be­tween the plasma membrane and the cytosol may function as a capacitor to insure against the cell being flooded with external calcium. When stimulated, cells often display remarkably uniform oscillations in intracellular calcium. At least two oscillatory patterns have been recognized suggesting the existence of separate mechanisms both of which may depend upon Ins(1, 4, 5) P 3 . In one mechanism, oscillations may be driven by periodic pulses of Ins(1, 4, 5) P 3 produced by receptors under negative feedback control of protein kinase C. The other oscillatory mechanism may depend upon Ins(1, 4, 5) P 3 unmasking a process of cal­cium-induced calcium release from the endoplasmic reticulum. The func­tion of these calcium oscillations is still unknown. This Ins(1, 4, 5) P 3 /calcium signalling system is put to many uses during the life history of a cell. It first occurs in immature oocytes, it functions during fertilization and there is an intriguing possibility that it might play a role in pattern formation during early development. Fully dif­ferentiated cells continue to employ this highly versatile system for regulating a host of functions including contraction, secretion and metabolism.


2007 ◽  
Vol 35 (1) ◽  
pp. 96-100 ◽  
Author(s):  
I.S. Ambudkar

The TRPC (transient receptor potential canonical) proteins are activated in response to agonist-stimulated PIP2 (phosphatidylinositol 4,5-bisphosphate) hydrolysis and have been suggested as candidate components of the elusive SOC (store-operated calcium channel). TRPC1 is currently the strongest candidate component of SOC. Endogenous TRPC1 has been shown to contribute to SOCE (store-operated calcium entry) in several different cell types. However, the mechanisms involved in the regulation of TRPC1 and its exact physiological function have yet to be established. Studies from our laboratory and several others have demonstrated that TRPC1 is assembled in a signalling complex with key calcium signalling proteins in functionally specific plasma membrane microdomains. Furthermore, critical interactions between TRPC1 monomers as well as interactions between TRPC1 and other proteins determine the surface expression and function of TRPC1-containing channels. Recent studies have revealed novel regulators of TRPC1-containing SOCs and have demonstrated a common molecular basis for the regulation of CRAC (calcium-release-activated calcium) and SOC channels. In the present paper, we will revisit the role of TRPC1 in SOCE and discuss how studies with TRPC1 provide an experimental basis for validating the mechanism of SOCE.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1580
Author(s):  
Nastja Sluga ◽  
Sandra Postić ◽  
Srdjan Sarikas ◽  
Ya-Chi Huang ◽  
Andraž Stožer ◽  
...  

Cholinergic innervation in the pancreas controls both the release of digestive enzymes to support the intestinal digestion and absorption, as well as insulin release to promote nutrient use in the cells of the body. The effects of muscarinic receptor stimulation are described in detail for endocrine beta cells and exocrine acinar cells separately. Here we describe morphological and functional criteria to separate these two cell types in situ in tissue slices and simultaneously measure their response to ACh stimulation on cytosolic Ca2+ oscillations [Ca2+]c in stimulatory glucose conditions. Our results show that both cell types respond to glucose directly in the concentration range compatible with the glucose transporters they express. The physiological ACh concentration increases the frequency of glucose stimulated [Ca2+]c oscillations in both cell types and synchronizes [Ca2+]c oscillations in acinar cells. The supraphysiological ACh concentration further increases the oscillation frequency on the level of individual beta cells, inhibits the synchronization between these cells, and abolishes oscillatory activity in acinar cells. We discuss possible mechanisms leading to the observed phenomena.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Jillian N Simon ◽  
BESARTE VRELLAKU ◽  
Stefania Monterisi ◽  
Sandy Chu ◽  
Nadiia Rawlings ◽  
...  

Introduction: Kinase oxidation is a critical signaling mechanism through which changes in the intracellular redox state alter cardiac function. In the myocardium, the regulatory Iα subunit of Protein Kinase A (PKARIα) can be reversibly oxidised, forming interprotein disulfide bonds within the holoenzyme complex. However, the impact of disulfide formation on kinase function, and its influence on PKA signaling in the context of heart disease remains unknown. Methods & Results: Myocardial ischemia-reperfusion (I/R) was found to be a potent inducer of PKARIα disulfide formation in vivo , both in mice and in humans. Using imaging modalities with high spatial and temporal resolution, we found that this conformation did not increase intrinsic PKA catalytic activity, but rather facilitated enhanced AKAP-dependent compartmentation of PKARIα in the adult mouse left ventricular (LV) myocyte, with preferential localization to the lysosome under oxidized conditions (n=38-41 myocytes, N=3 animals, p<0.01). Investigations in isolated LV myocytes revealed disulfide-modified PKARIα to be a significant regulator of lysosomal two pore channel (TPC)-dependent calcium-induced calcium release, with myocytes from ‘redox dead’ PKARIα mice (Cys17Ser) displaying spontaneous sarcoplasmic reticulum calcium release events and pronounced intracellular calcium oscillations. These events were prevented by ryanodine receptor blockade (1 mM tetracaine; n=14, p<0.01), acute depletion of lysosomal calcium stores (100 nM bafilomycin; n=7; p<0.01), or TPC inhibition (5 μM Ned-19; n=9; p<0.05). Absence of I/R-induced disulfide formation in “redox dead” PKARIα mouse hearts resulted in larger infarcts (2-fold increase, p<0.001) and a concomitant reduction in LV contractile recovery (1.6-fold, p<0.001), which could be fully prevented by administering the TPC inhibitor, Ned-19, at the time of reperfusion. Conclusions: Oxidised PKARIα acts as a potent inhibitor of intracellular calcium release in the heart through its redox-dependent interaction with the lysosome. In the setting of I/R, where PKA oxidation is induced, this regulatory mechanism is critical for protecting the heart from injury and offers a novel target for the design of cardioprotective therapeutics.


Zygote ◽  
1993 ◽  
Vol 1 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Alex McDougall ◽  
Isabelle Gillot ◽  
Michael Whitaker

SummaryThe fertilisation calcium wave in sea urchin eggs triggers the onset of development. The wave is an explosive increase in intracellular free calcium concentration that begins at the point of sperm entry and crosses the egg in about 20 s. Thimerosal is a sulphydryl reagent that sensitises calcium release from intracellular stores in a variety of cell types. Treatment of unfertilised eggs with thimerosal causes a slow increase that results eventually in a large, spontaneous calcium transient and egg activation. At shorter times after thimerosal treatment, egg activation and the calcium transient can be triggered by calcium influx through voltage-gated calcium channels, a form of calcium-induced/calcium release (CICR). Thimerosal treatment also reduces the latency of the fertilisation calcium response and increases the velocity of the fertilisation wave. These results indicate that thimerosal can unmask CICR in sea urchin eggs and suggest that the ryanodine receptor channel based CICR may contribute to explosive calcium release during the fertilisation wave.


Sign in / Sign up

Export Citation Format

Share Document